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PREFACE 

The growing amount of audio and music data on the Internet and in user databases leads 
to an increasing need for intelligent browsing, retrieving, and processing of this data with 
automated methods. Audio content analysis, a subfield of the research field music infor-
mation retrieval, aims at extracting (musical and perceptual) properties directly from the 
audio signal to support these tasks. Knowledge of these properties allows us to improve 
the interaction of humans or machines with digital audio signals. It enables new ways of 
assessing, processing, and visualizing music. 

Although analysis of audio signals covers other research areas such as automatic speech 
recognition, we will restrict ourselves to the analysis of music signals in the context of this 
book. 

When preparing classes on audio content analysis with a focus on music recordings it 
became quickly clear that — although there is a vast and growing amount of research litera-
ture available — there exists no introductory literature. This observation led to writing this 
book in the hope it might assist students, engineers, and developers who have basic knowl-
edge of digital signal processing. The focus lies on the signal processing part of audio 
content analysis, but wherever it may improve the understanding of either algorithmic de-
sign choices or implementation details some basic characteristics of human perception, 
music theory, and notation as well as machine learning will be summarized. 

Chapter 2 starts by introducing some definitions and offers a short reiteration of the 
most important tools of digital signal processing for the analysis of audio signals. The 
following chapters encompass the basic four technical content categories timbre, level, 
pitch, and rhythm. A fifth category is reserved for purely technical and statistical signal 
descriptions. Chapter 3 introduces low-level or short-term features that are widely used 
in systems for signal analysis. A large part of the chapter deals with timbre represen-

xiii 
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tations of a signal, accompanied by the introduction of statistical features. The chapter 
concludes with a summary of approaches to feature selection and post-processing. Chap-
ter 4 focuses on intensity-related features. It covers envelope features and simple models 
of human loudness perception. The extraction of pitch-related information such as the de-
tection of fundamental frequency, harmony, key, etc. is described in Chap. 5. Chapter 6 
focuses on the temporal and rhythmic aspects of the audio signal. It explains the segmen-
tation of audio signals into musical events and covers higher level information such as the 
detection of tempo and meter. The remaining chapters deal with analysis systems using 
combinations of timbre, loudness, onset, and pitch features to derive higher level informa-
tion. Chapter 7 describes the automatic synchronization of two similar audio sequences or 
an audio and a score sequence. Musical genre classification, one of the most prominent 
research fields of audio content analysis, is explained in Chap. 8. Chapter 9 is about audio 
fingerprinting which is probably the commercially most successful application in audio 
content analysis. The concluding chapter, targeting classical music, covers the analysis of 
music performance. It is not a core field in audio content analysis but emphasizes the dif-
ferentiation between performance aspects and musical aspects of recordings and elaborates 
on the manual and automated analysis methods used for musicological music performance 
analysis. The appendices provide details and derivations of some of the most important 
signal processing tools as well as a short survey on available software solutions for audio 
content analysis. 

Downloadable MATLAB files are available at: http://www.audiocontentanalysis.org. 

A. LERCH 

Berlin 

January, 2012 
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CHAPTER 1 

INTRODUCTION 

The objective of Audio Content Analysis (ACA) is the extraction of information from audio 
signals such as music recordings stored on digital media. The information to be extracted is 
usually referred to as meta data: it is data about (audio) data and can essentially cover any 
information allowing a meaningful description or explanation of the raw audio data. The 
meta data represents (among other things) the musical content of the recording. Nowa-
days, attempts have been made to automatically extract practically everything from the 
music recording including formal, perceptual, musical, and technical meta data. Examples 
range from tempo and key analysis — ultimately leading to the complete transcription of 
recordings into a score-like format — over the analysis of artists' performances of specific 
pieces of music to approaches to modeling the human emotional affection when listening 
to music. 

In addition to the meta data extractable from the signal itself there is also meta data 
which is neither implicitly nor explicitly included in the music signal itself but represents 
additional information on the signal, such as the year of the composition or recording, the 
record label, the song title, information on the artists, etc. 

The examples given above already imply that ACA is a multi-disciplinary research field. 
Since it deals with audio signals, the main emphasis lies on (digital) signal processing. 
But depending on the task at hand, the researcher may be required to use knowledge from 
different research fields such as musicology and music theory, (music) psychology, psycho-
acoustics, audio engineering, library science, and last but not least computer science for 
pattern recognition and machine learning. If die research is driven by commercial interests, 
even legal and economical issues may be of importance. 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 1 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 



2 INTRODUCTION 

The term audio content analysis is not the only one used for systems analyzing audio 
signals. Frequently, the research field is also called Music Information Retrieval (MIR). 
MIR should be understood as a more general, broader field of which ACA is a part. Downie 
and Orio have both published valuable introductory articles in the field of MIR [1, 2]. In 
contrast to ACA, MIR also includes the analysis of symbolic non-audio music formats 
such as musical scores and files or signals compliant to the so-called Musical Instrument 
Digital Interface (MIDI) protocol [3]. Furthermore, MIR may include the analysis and re-
trieval of information that is music-related but cannot be (easily) extracted from the audio 
signal such as the song lyrics, user ratings, performance instructions in the score, or bibli-
ographical information such as publisher, publishing date, the work's title, etc. Therefore 
the term audio content analysis seems to be the most accurate for the description of the 
approaches to be covered in the following. In the past, other terms have been used more 
or less synonymously to the term audio content analysis. Examples of such synonyms are 
machine listening and computer audition. Computational Auditory Scene Analysis (CASA) 
is closely related to ACA but usually has a strong focus on modeling the human perception 
of audio. 

Historically, the first systems analyzing the content of audio signals appear shortly after 
technology provided the means of storing and reproducing recordings on media in the 20th 
century. One early example is Seashore's Tonoscope, which allowed one to analyze the 
pitch of an audio signal by visualizing the fundamental frequency of the incoming audio 
signal on a rotating drum [4]. However, the development of digital storage media and 
digital signal processing during the last decades, along with the growing amount of digital 
audio data available through broadband connections, has significantly increased both the 
need and the possibilities of automatic systems for analyzing audio content, resulting in 
a lively and growing research field. A short introduction to extracting information from 
audio on different levels has been published by Ellis [5]. 

Audio content analysis systems can be used on a relatively wide variety of tasks. Obvi-
ously, the automatic generation of meta data is of great use for the retrieval of music signals 
with specific characteristics from large databases or the Internet. Here, the manual annota-
tion of meta data by humans is simply not feasible due to the sheer amount of (audio) data. 
Therefore, only computerized tags can be used to find files or excerpts of files with, e.g., a 
specific tempo, instrumentation, chord progression, etc. The same information can be used 
in end consumer applications such as for the automatic generation of play lists in music 
players or in automatic music recommendation systems based on the user's music database 
or listening habits. Another typical area of application is music production software. Here, 
the aim of ACA is on the one hand to allow the user to interact with a more "musical" soft-
ware interface — e.g., by displaying score-like information along with the audio data — 
and thus enabling a more intuitive approach to visualization and editing the audio data. On 
the other hand, the software can support the user by giving suggestions of how to combine 
and process different audio signals. For instance, software applications for DJs nowadays 
include technology allowing the (semi-) automatic alignment of audio loops and complete 
mixes based on previously extracted information such as the tempo and key of the signals. 
In summary, ACA can help with 

■ automatic organization of audio content in large databases as well as search and re-
trieve audio files with specific characteristics in such databases (including the tasks of 
song identification and recommendation), 

■ new approaches and interfaces to search and retrieval of audio data such as query-by-
humming systems, 
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■ new ways of sound visualization, user interaction, and musical processing in music 
software such as an audio editor displaying the current score position or an automati-
cally generated accompaniment, 

■ intelligent, content-dependent control of audio processing (effect parameters, intelli-
gent cross fades, time stretching, etc.) and audio coding algorithms, and 

■ automatic play list generation in media players. 

1.1 Audio Content 

The content or information conveyed by recordings of music is obviously multi-faceted. It 
originates from three different sources: 

■ Score: The term score will be used broadly as a definition of musical ideas. It can refer 
to any form of notating music from the basso continuo (a historic way of defining the 
harmonic structure) and the classic western score notation to the lead sheet and other 
forms of notation used for contemporary and popular music. 

Examples of information originating in the score are the melody or hook line, the 
key and the harmony progression, rhythmic aspects and specific temporal patterns, 
the instrumentation, as well as structural information such as repetitions and phrase 
boundaries. 

■ Performance: Music as a performing art requires a performer or group of performers 
to generate a unique acoustical rendition of the underlying musical ideas. The per-
formers will use the information provided by the score but may interpret and modify 
it as well as they may dismiss parts of the contained information or add new informa-
tion. 

Typical performance aspects include the tempo and its variation as well as the micro-
timing, the realization of musical dynamics, accents and instantaneous dynamic mod-
ulations such as tremolo (see Sect. 4.2), the usage of specific temperaments (see Sect. 
5.2.5.2) and expressive intonation and vibrato (see Sect. 5.2.5.3), and specific playing 
(e.g., bowing) techniques influencing the sound quality. 

■ Production: The process of recording the performance and the (post-) production 
process will impact certain characteristics of the recording. 

These are mainly the sound quality of the recording (by microphone positioning, 
equalization, and by applying effects to the signal) and the dynamics (by applying 
manual or automatic gain adjustments). Changes in timing and pitch may occur as 
well by editing the recording and applying software for pitch correction. 

There are certain characteristics which cannot easily be assigned to a single category; 
the timbre of a recording can be determined by the instrumentation indicated by the score, 
by the specific choice of instruments (e.g., historical instruments, specific guitar amps, 
etc.), by specific playing techniques, and by sound processing choices made by the sound 
engineer or producer. 

ACA systems may in principle cover the extraction of information from all three cate-
gories. In many cases, however, no distinction is being made between those categories by 
researchers and their systems, respectively. The reason is that popular music in the tradi-
tion of western music is one of the main targets of the research for several — last but not 
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Interpretation, 
Classification 

Figure 1.1 General processing stages of a system for audio content analysis 

least commercial — reasons and that with popular music a score-like raw representation of 
musical ideas cannot be distinguished as easily from the performance and production as in 
"classical" or traditional western music. 

From a technical point of view, five general classes can be identified to describe the 
content of a music recording on a low level: 

■ statistical or technical signal characteristics derived from the audio data such as the 
amplitude distribution etc. (see Sects. 3.2 and 3.4), 

■ timbre or sound quality characteristics (see Sect. 3.3), 

■ intensity-related characteristics such as envelope-, level-, and loudness-related prop-
erties (see Chap. 4), 

■ tonal characteristics which include the pitches and pitch relations in the signal (see 
Chap. 5), and 

■ temporal characteristics such as rhythmic and timing properties of the signal (see 
Sect. 6). 

The basic information clustered in each individual class can be used and combined to 
gather a deeper knowledge of the music such as on musical structure, style, performance 
characteristics, or even transported mood or emotional affection. Especially the last ex-
ample, however, shows that while many parameters to be extracted from an audio file are 
objective in a way that they describe music properties independent of the perceptual context 
(e.g., key, tempo), other properties depend on the individual listener's music experience or 
way of perceiving music. Not only might this experience vary between the multitude of 
different listeners, but it might also vary with the listener's individual mood and situation. 

1.2 A Generalized Audio Content Analysis System 

Most existing systems for the analysis of audio content can be structured into two major 
processing stages as depicted in Fig. 1.1. 

In the first processing stage so-called features are extracted from the audio signal. This 
extraction process serves two purposes: 

■ Dimensionality reduction: When processing a whole audio file, the raw amount of 
data in a whole audio file is too large to handle it in a meaningful way. One channel 
of a digital audio file in Compact Disc (CD) quality (44,100 samples per second, 16 
bits per sample) with a length of 5 minutes contains 

5min · 60s/min · 44100samples/«. 16bits/sampie = 211,680,000bits. (1.1) 

Audio 
Signal 

Feature 
Extraction 
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A feature (or a series of featuress) is used to represent this data with fewer values by 
suppressing (hopefully) irrelevant information. A typical instantaneous feature will 
produce one single feature value for each block of audio samples or even for the whole 
signal from beginning to end. 

■ More meaningful representation: Although all the information that can possibly be 
extracted is implicitly contained in the raw audio data, it is necessary to focus on 
the relevant aspects and to transform the audio data into a representation easily in-
terpretable by humans or machines. If, for instance, the variation of brightness over 
time is of interest, one would have difficulties to extract such information by simply 
observing the series of audio samples. Instead, a model of the human perception of 
brightness is required, however simple or sophisticated this model may be. In the case 
of brightness, we would probably be interested in a measure of spectral distribution 
(see Sect. 3.3). 

A feature is not necessarily required to be meaningful in a perceptual or musical way and 
does not have to be interpretable by humans. It may also just be designed to provide 
condensed information to the second processing stage of an ACA system to support the 
generation of a reliable overall result. Usually a distinction is made between low-level 
features and high-level features. Low-level features are generally considered to have no 
direct (humanly interpretable) meaning as opposed to high-level features which represent 
terms in which humans refer to music such as tempo, structure, etc. Those high-level 
features are usually extracted in the second processing stage shown in Fig. 1.1. 

Obviously, the term feature is not very clearly defined but is used for any lower dimen-
sional representation of the audio signal to be interpreted. Features can be used to compute 
a result but can also be used to calculate derived, more meaningful "features." 

The second processing stage of an ACA system takes the extracted feature data and 
attempts to map it into a domain both usable and comprehensible. Thus, it turns the low-
level feature data into a high-level feature and meaningful meta data, respectively. This 
process can be accomplished by a classification system (sorting the input into pre-defined 
and trained categories) or by applying (empirical or musical) knowledge to the task. 

Since there is no clear objective distinction between low-level features and high-level 
features, it is sometimes a context-dependent decision whether the system output is referred 
to as low-level or high-level description. In fact, we face probably an unlimited number of 
abstraction levels between the raw audio data and the different (human) ways of referring 
to music. While one system might be referring to the tempo of a recording as high-level 
information, another system might use this information just as one feature amongst many 
others to, for example, automatically recognize the musical style. Ultimately, there can 
only be the conclusion that an ACA system may either consist only of one instance of the 
two processing stages or of any arbitrary number of nested instances of such processing 
stages with the output of one instance forming one of the inputs of the following instance. 



CHAPTER 2 

FUNDAMENTALS 

This chapter re-introduces and summarizes some of the important characteristics of digital 
audio signals and tools used in signal processing and ACA. Furthermore, it will introduce 
some definitions used in the following chapters. In order to keep this chapter short, some of 
the definitions may lack derivation since it is not possible to give an extensive introduction 
to digital audio signal processing in this context. The interested reader may, for instance, 
refer to the books by Oppenheim and Schäfer [6], Ohm and Luke [7], and Smith [8] for 
more complete introductions. 

2.1 Audio Signals 

An audio signal as humans perceive it can be described as a function of time-variant sound 
pressure level. A microphone can be used to convert the sound pressure level into voltage. 
The signal is defined for all times t and is therefore a (time-) continuous signal x{t). 

2.1.1 Periodic Signals 

A periodic signal repeats itself in constant time intervals. Its periodicity can be formulated 
by 

x(t) = x(t + T0) (2.1) 

with T0 being the periodicity interval, or, in other words, the period length of the first of 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 7 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 
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the harmonics. The fundamental frequency of this periodic signal is then 

Ιο = ψ- (2-2) 

The frequency of other tonal components, the remaining harmonics, is always an integer 
multiple of the frequency of the first harmonic. 

Every periodic signal x(t) can be represented by a superposition of weighted sinusoidal 
signals, the Fourier series 

x(t) = Σ a{k)e^akt. (2.3) 

The periodicity, or the fundamental frequency, of the signal is represented as angular fre-
quency ω0 = 2π/ο. The real part of eiw°kt represents the cosine components (even) and its 
imaginary part the sine components (odd) of the signal: ρ)ωί = cos(wi) + j sin(wi). The 
coefficient a(k) is the weight of the A;th harmonic and can be calculated by 

T„/2 

a(k) = ~ I x(t)erioJokt dt. (2.4) 
M) J 

- Τ θ / 2 

If the number of frequencies used to represent the signal is limited 

o 
x(t) = ] T a{k)e^"kt, (2.5) 

fc=-0 

then some periodic signals may be constructed only imperfectly. The larger the order Ö, 
the higher is the highest frequency included and the better is the representation of the 
signal. 

Periodic signals featuring "sudden changes" such as discontinuities of the waveform re-
quire higher order Fourier coefficients to model the waveform sufficiently well. The mod-
eling of discontinuities and so-called transients requires high frequencies. More systemat-
ically we can say that the higher the order of derivations of the signal that are monotone is 
the lower the required order will be to represent the signal sufficiently well. The most ex-
treme example is a sinusoidal signal which has an infinite number of monotone derivatives 
and for which only one coefficient a{\) is required to represent the signal perfectly. 

Figure 2.1 shows one period of two periodic signals, a sawtooth (top) and a square 
wave (bottom), and their representation with the model orders 3, 25, and unlimited. The 
coefficients a(k) for these two signals are 

asaw(fc) = r , (2.6) 
π ■ k 

a^ik) = ^r^-fy. (2.7) 

Due to the discontinuities of these two signals there are model errors in the form of over-
shoots around the point of discontinuity. It can be observed that the frequency of the 
overshoots increases and the duration of the overshoots decreases with increasing model 
order. However, the amplitude of the overshoots stays constant unless the order is infinite. 
This is called Gibbs'phenomenon [9, 10]. 
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Figure 2.1 Approximation of periodic signals: sawtooth (top) and square reconstructed with 3 and 
25 sinusoidal harmonics 

2.1.2 Random Signals 

In contrast to periodic signals, future values of random signals cannot be predicted no 
matter how long the signal has been observed. That means that there exists no fundamental 
frequency for this type of signal. Every observation of such a signal is therefore only an 
example of an unlimited number of possible incarnations of the signal. A complete signal 
description is theoretically only possible with an unlimited number of observations. 

An important subcategory of random signals is built of stationary signals for which 
basic properties (such as arithmetic mean and higher central moments, see below) do not 
change over time. White noise is a typical example of a stationary random signal. 

2.1.3 Sampling and Quantization 

In the digital domain, we cannot deal with continuous signals. Therefore the analogue, 
continuous signal x(t) has to be discretized in both amplitude and time, where quantization 
refers to the discretization of amplitudes and sampling refers to the discretization in time. 
The resulting signal is a series of quantized amplitude values x(i). 

2.1.3.1 Sampling 

The discretization in time is done by sampling the signal at specific times. The distance Ts 
in seconds between sampling points is equidistant in the context of audio signals and can 
be derived directly from the sample rate / s by 

7s = 
1 

(2.8) 

Figure 2.2 visualizes the process of sampling by plotting a continuous signal (top) and 
a sampled representation of it (bottom) sampled at a sample rate of / s = 700 Hz. 

An important property of sampled signals is that the sampled representation is ambigu-
ous as exemplified in Fig. 2.3. This example shows that different input signals may lead to 
the same series of samples. 
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w ° » I · ?vjî >^^J^v^%H^v^> 
10 20 30 40 

Figure 2.2 Continuous audio signal (top) and corresponding sample values at a sample rate of 
/s = 700 Hz) 

1 

0.5 

f ° 
■0.5 

-1 

I I I I 

I 1 1 · 1 

1 * 
0 3 6 

! —> 

1 

0.5 

0 

0.5 

-1 

Λ Λ Λ Λ Λ o.; 
1 

v U U U V V 

0 

-0.5 

-1 

1 

0.5 

0 

-0.5 

-1 

0 0.5 1 
i Iras] -* 

I I I I 

" — — — * — i — r 

I I I 

1 

0.5 

0 

-0.5 

-1 

I I I I 

I 1 1 · , 

I I II 

Figure 2.3 Continuous (top) and sampled (below) sinusoidal signals with the frequencies 1 kHz 
(left), 5 kHz (mid), 7 kHz (right). The sample rate is / s = 6 kHz 

The signal can only be reconstructed unambiguously when certain requirements for 
audio signal and sample rates are met as defined by the sampling theorem: 

Sampling Theorem 
A sampled signal can only be reconstructed without loss of information if the sample 
rate / s is higher than twice the highest frequency / m a x in the sampled audio signal. 

/ s > 2 · / m a x (2.9) 
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Figure 2.4 Characteristic line of a quantizer with word length w = 4 bits showing the quantized 
output amplitude for a normalized input amplitude (left) and the quantization error with respect to 
the input amplitude (right) 

Historically the sampling theorem is attributed to Kotelnikov [11] and Shannon [12] and 
is based on work by Whittaker [13] and Nyquist [14]. 

If the signal contains frequency components higher than half the sample rate, these 
components will be mirrored back and aliasing occurs. See also Appendix B.3 for further 
explanation of this artifact. 

2.1.3.2 Quantization 

In order to discretize the signal amplitudes the signal is quantized. Quantization means that 
each amplitude of the signal is rounded to a pre-defined set of allowed amplitude values. 
Usually, the input amplitude range between the maximum and the minimum amplitude is 
assumed to be symmetric around 0 and is divided into M. steps. If M. is a power of 2, the 
amplitude of each quantized sample can easily be represented with a binary code of word 
length 

w = log2(M). (2.10) 

Since M is an even number, it is impossible to both represent zero amplitude as a quanti-
zation step and maintain a symmetric number of quantization steps above and below zero. 
The usual approach is to have one step less for positive values. Typical word lengths for 
audio signals are 16, 24, and 32 bits. Figure 2.4 shows the characteristic line of a quantizer 
and the corresponding quantization error in dependence of the input amplitude. 

The distance A Q between two neighboring quantization steps is usually constant for 
all steps. That means that the quantization error eQ is always in the range [—AQ/2; AQ/2] 
if the maximum input signal amplitude is within the range spanned by the maximum al-
lowed quantized amplitudes (no clipping). The quantization error is the difference between 
original signal x and quantized signal XQ\ 

eQ(i)=x(i)-xQ(i). (2.11) 

If the input signal amplitudes are much larger than the step size A Q but in the range of 
allowed amplitudes, the distribution of quantization error amplitudes can be assumed to 

Of 
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be rectangular. The power of the quantization error PQ can then be estimated with its 
Probability Density Function (PDF) pq(eQ) (compare Sect. 2.1.4.1): 

OO A Q / 2 

PQ= J e2
Q- Pq(eQ) deQ = ~ J eQ deQ = - ^ . (2.12) 

- O O - A Q / 2 

It is obvious that the power of the quantization error will be lower the smaller the step size 
A Q and the higher the word length w is, respectively. The Signal-to-Noise Ratio (SNR) 
in decibels is a good criterion of the quality of a quantization system. The SNR can be 
calculated from the ratio of the signal power Ps and the quantization error power P Q by 

S N R = 1 0 1 o g 1 0 ( j M [dB]. (2.13) 

A high SNR thus indicates good quantization quality. Using Eqs.(2.12) and (2.13) it fol-
lows that increasing the word length by one bit gains approximately 6 dB: 

Signal-to-Noise Ratio (SNR) 

SNR = 6.02 · w + cs [dB] (2.14) 

The constant cs depends on the signal's amplification and PDF: 

■ square wave (full scale): cs = 10.80 dB 

■ sinusoidal wave (full scale): cs = 1.76 dB 

■ rectangular PDF (full scale): cs = OdB 

■ Gaussian PDF (full scale = 4σ9)': cs = -7.27dB 

Assuming that a real-world audio signal is closer to the PDF of a noise with Gaussian PDF 
than to that of a sine wave, the typical SNR is approximately 8 dB lower than commonly 
stated. Furthermore, the above reference values are given for signals that are leveled more 
or less optimally; if the input signal is scaled, the SNR will decrease accordingly (by 
6.02 dB per scaling factor 1/2). 

The term fall scale refers to the highest quantization step. A full-scale sine wave will 
thus have an amplitude equaling the highest quantization step (compare also page 72). 

These considerations are often only of limited use to the signal processing algorithm 
designer, as the quantized signal is usually converted to a signal in floating point format, 
effectively resulting in a non-linear characteristic line of the quantizer. The floating point 
stores the number's mantissa and exponent separately so that the quantization step size A Q 
basically increases with the input amplitude. In practice the signals in floating point format 
are just used as if they had continuous amplitude values, although the quantization error 
still persists. The choice of a maximum amplitude is arbitrary in floating point format; 
the most common way is to map full scale to the range [—1; 1] to make the processing 
independent of the quantizer's word length. 

Using the approximation that no values are clipped. 
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Figure 2.5 Probability density function of a square wave (top left), a sinusoidal (top right), uniform 
white noise or a sawtooth wave (bottom left), and Gaussian noise (bottom right) 

2.1.4 Statistical Signal Description 

In contrast to sinusoidal signals, noise cannot be described in the time domain with an-
alytical functions. Statistics can help to identify some properties that describe the signal 
when neglecting its evolution in time. One of the most common representations is the 
PDF, which is a useful tool to describe stationary processes or signals that have the same 
properties for any point in time t. 

2.1.4.1 Probability Density Function 

The PDF px (x) of a signal is the probability distribution of a signal. The abscissa of a PDF 
plot represents all possible amplitude values of the signal x and their probability is plotted 
on the ordinate. For example, a rectangular PDF means that all possible signal amplitudes 
occur with the same probability. The properties of the PDF are 

Px{x) > 0, and 
oo 

/ px(x)dx = 1. 

(2.15) 

(2.16) 

A set of prototypical PDFs is shown in Fig. 2.5. For a full-scale square wave, the PDF 
has only two peaks at maximum and minimum amplitudes while other amplitude values do 
not exist. A sine wave has a PDF in which values similar to the arithmetic mean (here: 0) 
are less frequent than values far from the mean. A uniform PDF can be found with noise 
generated with the r a n d function of different programming languages; a sawtooth has 
such a uniform PDF as well. A Gaussian distribution 

1 
Pg 

V2 
:exp 

π σ ' 

(x- μχγ 

2σ2 (2.17) 

is assumed to be a typical distribution of "real-world" noise; a typical music signal has in 
many cases a distribution shaped similar to a Laplace distribution with a prominent peak 
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Figure 2.6 Probability density function estimated from a music signal compared to a Laplace 
distribution 

at 0 amplitude (compare Fig. 2.6). The Laplace distribution is given by 

« = έβχρ(-^)· <218) 

If the input signal is a constant, for example, a DC offset, the PDF consists only of a single 
peak. 

Comparing Figs. 2.5 (top right) and 2.6 makes it obvious that under the assumption that 
a PDF describes a signal sufficiently well, a sine wave is not a very good approximation of 
a real-world music or speech signal. 

The PDF of quantized input signals has a limited set of amplitude classes as a quantized 
signal has only a limited set of amplitude values. 

The PDF of a signal can be estimated from a sufficiently long block of samples by 
computing a histogram of signal amplitudes and dividing it by the number of observed 
samples. It is then sometimes referred to as Relative Frequency Distribution (RFD). For 
the sake of simplicity the PDF and the RFD will not be differentiated in the following. 

2.2 Signal Processing 

The following chapters introduce methods for processing digital signals. There exists a 
vast amount of introductory literature on digital signal processing — as mentioned above 
we will not attempt to reiterate the theory and methods but instead give short summaries 
on the most important foundations for ACA. 

2.2.1 Convolution 

Every linear, time-invariant system can be completely described by its impulse response 
h(i), which is the output of a system for an impulse as an input signal. Examples of such 
systems (or systems which can be approximated as such systems) are filters, speakers, 
microphones, rooms, etc. The output y(i) of a discrete linear and time-invariant system 
can be computed from input signal x(i) and the system's impulse response h(i) of length 

^ r ^ Γ^ 

• — · — · Measured 

Gaussian 
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Convolution Properties 

■ Identity for convolution with the delta function δ(ί): 

x(i) = x(i) * δ(ί) 

■ Commutativity: 
y(i) = x(i) * h(i) — h(i) * x(i) 

• Associativity: 

g(i) * h(i) * x(i) = (g(i) * h(i)) * x(i) = g(i) * (h(i) * x{i)) 

• Distributivity: 

g(i) * (h{i) + x{i)) = (g{i) * h(%)) + (g{i) * x(i)) 

• Circularity: If h(i) is periodic, then the convolution result y(i) = h(i) 
also be periodic. 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

*x(i) will 

J by the convolution operation: 

3-1 

y(i) = x(i) * h(i) = J2 h(J) ■ x(i ~ 3)- (2-23) 
3=0 

The most important properties of the convolution operation are summarized in Eqs. (2.19)-
(2.22). Derivations of these properties can be found in Appendix A. 

2.2.1.1 Simple Filter Examples 

One typical linear system in digital signal processing is the filter. Every filtering process is 
a convolution, but for practical filter implementations this is only of interest for filters with 
a finite length impulse response, so-called Finite Impulse Response (FIR) filters. Filters 
with an infinite length impulse response are unsurprisingly referred to as Infinite Impulse 
Response (IIR) filters and have a feedback path which complicates the determination of the 
impulse response in comparison with FIR filters for which the impulse response simply 
equals its filter coefficients. 

In the following, two simple and frequently used digital low-pass filters will be pre-
sented, the Moving Average (MA) filter as a prototypical FIR filter and the single-pole filter 
as a simple IIR filter. 



16 FUNDAMENTALS 

« -0 

**-. 
< 
5 ίϋ 

0 

-10 

-?n 

-30 

-40 

-50 
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 

flh -► Slh -► 

Figure 2.7 Magnitude frequency response of a moving average low-pass filter with the impulse 
response lengths of 2, 10, and 50 (left) and frequency response of a single-pole low-pass filter with 
an a of 0.5, 0.9, and 0.999 (right) 

Moving Average Filter 

The filter equation for an MA filter with an impulse response of length J is 

J-i 

y(i)=^2KJ)-x(i-J)- (2-24) 
j=o 

The coefficients b(j) of a typical MA filter have two main properties; the filter coefficients 
are identical: 

b(0) = b(j) f o r 0 < j < J - l , (2.25) 

and the sum of all coefficients is normalized to 1: 

J-i 

j=o 

Equations (2.25) and (2.26) result in the coefficients b(J) being identical and normalized 
to b(j) = x/j. Alternatively they can also be weighted by an arbitrary window function. 
Typical window functions are symmetric and weight center samples higher than lateral 
samples. The window shape allows to elongate the impulse response. One of the simplest 
window shapes would be triangular. 

Applying an MA filter with unweighted coefficients twice to the signal is equivalent to 
applying an MA filter with a triangular shaped impulse response of double length. Thus, 
the repeated use of an MA filter is similar to increasing the impulse response length and 
applying a window function to the coefficients. 

The MA filter's cut-off frequency, the frequency at which the magnitude first drops by 
3 dB, will decrease with an increasing number of coefficients as depicted in Fig. 2.7 (left). 
Smith gives a detailed introduction to MA filters in [15]. 

The number of multiply and add operations per hop increases linearly with the im-
pulse response length of the MA filter. If no window function had been applied to the 
coefficients, i.e., all coefficients are identical b(k) = b, the number of operations can be 
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drastically reduced by implementing the filter recursively: 

.7-1 

y(i) = Y^b-x(i-j) 
3=0 

J 
= b-(x{i)-x{i-J))+^2b-x(i-j) 

J' = l 
v v ' 

y(i-i) 

= b-(x{i)-x(i-J))+y{i-l). (2.27) 
A recursive implementation is not applicable with weighted filter coefficients. 

If the filter coefficients of the MA filter are symmetric with h(i) = h{J —l—i) (which 
is only possible for an FIR filter), then the filter will have a linear phase response and thus 
a constant group delay. 

Single-Pole Low-Pass Filter 
The single-pole filter is — mainly due to its simplicity and efficiency — one of the most 
frequently used smoothing and low-pass filter. The filter equation is 

y(i) = a-y(i-l) + (l-a)-x{i) with 0 < a < 1. (2.28) 

Figure 2.7 (right) shows the magnitude of the frequency response for three different a. The 
coefficient a depends on the required integration time ΤΊ; if the integration is defined to be 
the time required for the filter's response on a step function to rise from 10% to 90%,2 the 
coefficient is 

"■«"(sl)- a29) 

The cut-off frequency is then 

ωο(α) = arccos (2 — cosh (log(o;))) (2.30) 

which is only defined for a > e~ a r c c o s h(3). 

2.2.1.2 Zero Phase Filtering with HRs 

No non-trivial causal system provides a zero phase response. A zero phase response means 
that the group delay at each frequency is zero as well. Zero phase response systems output 
the unmodified timing characteristics of each individual frequency group. 

In the case of linear phase FIR filters a zero phase response can be reconstructed in an 
anti-causal way by removing the introduced delay from the filter output (which could also 
be interpreted as moving the impulse response to be symmetric around time 0). 

In the case of IIR filters, however, this procedure is not applicable. In a non-real-time 
environment in which the whole input file is available, it is, however, possible to generate 
a filtered signal with zero phase shift by using an IIR filter. This can be done by applying 
the filter twice in series to the signal while using the time-reversed input signal the second 
time. The second filter run has the effect of leveling out the phase shifts introduced by 
the first run. The magnitude response of the complete filter process is then the filter's 
squared magnitude response. Figure 2.8 visualizes the intermediate and the final result of 
this process in the time domain. 

2Note that there exist other approaches to defining the integration time that may differ significantly. 
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Figure 2.8 Example of zero phase filtering: input signal (top), low-pass filtered signal after the 
first forward pass (mid), and final result of both forward and backward paths (bottom) 

To explain this behavior mathematically, the following property is of importance: 

${h(-i)} = H(-ju,), (2.31) 

meaning that the Fourier Transform (FT) $ (see Sect. 2.2.3) of a time-reversed signal 
equals the complex-conjugate of the transform of the original signal. The flip function is a 
tool which helps us in the derivation: 

flip (x(i)) = x(-i). (2.32) 

The output signal y(i) is computed via the temporary output ytmp(i) = h{i) * x(i) by 

y{i) = flip(/i(i)*i/tmp(-i)) (2.33) 
= H-i)*ytmp(i) (2.34) 

= h(-i) * (h(i) * x(i)). (2.35) 

It follows in the Fourier domain: 

Υ(ίω) = Η(-3ω)·(Η(ίω)·Χ(ίω)) (2.36) 

= \H(jcj)\2 ■ Χ()ω). (2.37) 

2.2.2 Block-Based Processing 

Signal processing algorithms usually work block-based, meaning that the input signal is 
being split into consecutive blocks of frames with length AC. These blocks are processed 
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Figure 2.9 Schematic visualization of block-based processing: the input signal with the input 
sample index i is split into overlapping blocks of length /C and block index n; the hop size Ή is the 
distance from the start of one block and the following block 

one after another. In extreme cases, the block lengths can be either K = 1 or equal the 
length of the processed audio file, but in most cases K is chosen arbitrarily between K = 32 
and K, = 16,384 (in many cases powers of 2 are an advantage). Some reasons for this 
block-based processing are 

■ the internal usage of block-based algorithms such as the Discrete Fourier Transform 
(DFT) (see Sect. 2.2.3 and Appendix B), 

■ the characteristics of the used audio Input/Output (IO) hardware that usually returns 
blocks of samples, 

■ reduced memory allocation (instead of the complete audio file length; only the block 
length has to be allocated), and 

■ computational efficiency compared to individual sample processing by avoiding func-
tion call overhead and vectorization with Single Instruction Multiple Data (SIMD) 
operations to optimize workload. 

Systems working in real time have the constraint that the system has to be able to perform 
the processing of one block of data during the time frame this block consumes. Another 
condition of such systems is that they have no access to future input samples but only the 
present and possibly past samples. For real-time systems, the latency of the system, i.e., 
the delay between an input sample and the corresponding output value, can never be lower 
than the block length of the algorithm. The block length used to call the algorithm does not 
necessarily correspond to the algorithm's internal block length. If the input block length 
is not a multiple of the internal block length, then efficiency problems can arise since the 
computational workload cannot be distributed uniformly over the input blocks, resulting in 
occasional workload peaks. 

Internally, most audio algorithms use overlapping blocks of data as depicted in Fig. 2.9. 
That means that the boundaries of subsequently processed blocks overlap, i.e. that the last 
sample of the first block is after the first sample of the second block. The sample indices of 
the block boundaries start sample is{n) and stop sample ie(n) of processing block n can 
then be formulated as 

is(n) = is(n-l)+H, (2.38) 

ie(n) = i s ( n ) + / C - l , (2.39) 
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with H being the so-called hop size in samples. The hop size should be smaller than or 
equal the block length. The block overlap ratio can be calculated with 

or = ^ - (2.40) 

A typical block overlap ratio is or > xfi. When only one result v{n) is computed per 
processing block, the assigned time stamp in samples ts(n) would usually be either the 
start frame of the block ts(n) = »»(«Y/s or — more common — its middle position: 

ie(n) - is(n) + I is{n) K. is(n) 
ts{n) = 2 ^ + ΊΓ = ϊΤ* + - Λ - (Z41) 

If the time stamp ts(n) is chosen to be in the middle of the block, the practical problem 
arises that the start and end time stamps always represent a shorter time range than the 
audio signal itself. For example, if the audio signal starts at sample index 0, the first time 
stamp will be at ('c-1)/2. This is usually avoided by padding the signal with (lc-1)/2 zeros 
at beginning and end. However, in that case the results may not be reliable for the first and 
the last block because the computation is done with a smaller number of audio samples. 

Some algorithms do not only compute results per block of audio data but combine the 
extracted results per block v{n) again in a texture window. Texture windows may in turn 
overlap depending on texture window length and texture window hop. In this case, the 
same logic as above is followed with the difference that the window boundaries are now 
block indices instead of frame indices. Texture windows can be used to compute, e.g., 
windowed statistical descriptions from the series of results v{n). 

2.2.3 Fourier Transform 

The DFT is one of the most important tools for processing and analyzing audio signals. 
In the following, the important properties and characteristics of this widely used transform 
are listed. A more detailed explanation — starting with the FT of continuous signals — 
can be found in Appendix B. The DFT of a block of the signal x{i) is defined by 

K-l 

Χ()ΑΩ) = ff {x(i)} = Σ x(i)e-ikiAn (2.42) 
i=0 

with ΔΩ being the distance between two frequency bins as angular frequency difference 

The frequency of bin index k can then be computed from the block length K and sample 
rate / s by 

f(k) = ^ k = ^k. (2.44) 

We will refer to the DFT of the nth block with length K = ie(n) — is{n) + 1 of the audio 
data as Short Time Fourier Transform (STFT): 

X(k,n)= Σ ^ ( i )exp i - j fc · ( i - i s ( n ) ) — J . (2.45) 
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Figure 2.10 Spectrogram of a monophonic saxophone signal: each column is (the magnitude of) 
an STFT of a block with the time increasing from left to right; the level of each specific point in 
frequency and time is visualized by the darkness of the point 

The most important properties of the STFT are listed on Pg. 22. See Appendix B for 
derivations. 

A typical visualization of an audio signal that combines time and frequency components 
is the spectrogram as shown in Fig. 2.10. An STFT is calculated for each (overlapping) 
block of sample data; the resulting STFTs are then plotted in a pseudo-three-dimensional 
image in which (the magnitude of) each STFT is represented by a column and each bin is 
darkened according to its level. 

2.2.3.1 Frequency Reassignment: Instantaneous Frequency 

Frequency reassignment is a method to virtually improve the spectral resolution by map-
ping the frequency data to coordinates closer to its "true" coordinates. Frequency reas-
signment is not a fundamental frequency detection technique but can help to increase the 
frequency accuracy of spectral frequency analysis by utilizing the phase spectrum. 

The reassignment process may basically cover both frequency reassignment as well as 
time reassignment. For an overview of (time-) frequency reassignment, see Fulop and Fitz 
[16] and Lagrange [17]. The focus will be exclusively on frequency reassignment in the 
following. 

The basic idea of frequency reassignment is that it is possible to estimate the frequency 
of a signal via its phase. The frequency is the derivative of the phase Φ(λ;, t): 

ω(Μ) = ^ Φ ί Μ ) . (2-46) 

Two common approaches are used to compute the so-called instantaneous frequency 
from the discrete STFT. The first one is to literally compute the phase difference of consec-
utive STFT spectra, and the second one is to compute two STFTs with different windows, 
namely with the second window being the derivative of the first window. 
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Fourier Transform Properties 

■ Invertibility 

1 /c-i 
x(is(n)... ie(n)) = 3 " 1 {X(fc, n)} = — Σ X(/c, n) · exp 

0 

■ Linearity and Superposition 

3 {ci · x ( i s ( n ) . . . ie{n)) + c2 · y(ia(n).. 

= ci · X(k,ri) + c2 

■ Periodicity 
X(k + K,,n) = X(k,n). 

■ Symmetry [for real x(i)] 

X{tC-k,n)=X*(k,n). 

■ Circularity 

3 " 1 {H(k,n) ■ X{k,n)} = h'(is(n)...ie{n)) * x 

with h! being a periodically extended sequence of the 
pie boundaries is(n) and ie(n). 

■ Time and Frequency Shifting 

3{x(i -io)} = X(k,n) · exp ( - j 

3"1 {X(k- k0,n)} = x(is(n) ...ie(n)) 

■ Time and Frequency Scaling 

ff{x(cO} = ^ ( ^ » ) 

■ Parseval's Theorem 

i*(n) IC-1 

i=t8(n) /c=0 

■ Duality 

3{X(i)} = ^x(k,n). 

.ie(n))} 

Y(k,n). 

(iB(n)...i 

K> 

eW) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

signal block with the sam-

2nk. \ 

ΊΓι°) 
•exp(j|V). 

) l 2 · 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 
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Explicit Phase Difference 
The derivation operation from Eq. (2.46) can be easily approximated by computing the 
difference of the phases of consecutive STFT phases: 

ΔΦΜ(<;,η) 
ui(k,n) = — / s . (2.57) 

The actual computation, however, is not as trivial as it seems at first glance as A<I>u(fc, n) 
represents the unwrapped phase difference while the computed phase spectrum gives the 
wrapped phase in the range of ] — π; π]. In order to estimate the unwrapped phase difference 
we first compute the estimate of the unwrapped phase of the current analysis block by 

<&(k, n) = Φ(*, n - 1) + —-Ή. (2.58) 

Since the phase Φ(&,η) is in the range of ] — π;π], the unwrapped phase can then be 
formulated as 

<i>u(fc, n) = <l(fc,n) + princarg <E>(fc, n) — <l(fc,n) (2.59) 

with the princarg function being the principal argument of the phase with a resulting range 
of ] — π; π]. The phase difference is then 

ΔΦ„(Α;,η) = <&a{k,n) - §{k,n - 1) 

= <l(fc,n) + princarg Φ(Λ,η) — Φ(Α;,η) — Φ(Α;,η-1). 

The final result can be retrieved by substituting Φ(Α:, η) with Eq. (2.58): 

(2.60) 
2nk 

ΔΦ„(Α;, η) = —^Ή + princarg 
27ΓΑ· 

<i>{k,n)-<i>(k,n-l)-— H 

To improve the reliability of the phase unwrapping process the hop size H should be as 
small as possible. 

Phase Difference Using Transforms 
An alternative to computing the phase difference directly is to use two different windows 
for computing two STFTs of one analysis block. Then, the instantaneous frequency can be 
computed by 

e, s , n „ (XD(k,n)-X*(k,n)\ / / W 1 X 

un(ktn)=U(k) + 3[ \x^n)ir'\ (2-61) 

with Xo(k, n) being the STFT computed using the derivative of the window used for the 
calculation of X(k, n) [18]. This approach is independent of the hop size but requires the 
computation of two DFTs per block. 

2.2.4 Constant Q Transform 

The Constant Q Transform (CQT) was introduced to overcome the insufficient frequency 
resolution of the STFT at low frequencies for common STFT lengths. The CQT calculates 
frequency coefficients similar to the DFT but on a logarithmic frequency scale [19]: 

X^k,n^ = ~KÄk) Σ ' W f c (*~^) ·3:(«)εχρΜ2π— s j . (2.62) 
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Q adjusts the desired frequency resolution per octave c, while K,{k) depends on both the 
target frequency and the quality factor Q: 

Q = if = 2v^i' ( 2 · 6 3 ) 

K(k) = ^ Q . (2.64) 

The CQT can be interpreted as computing a DFT only for specific, logarithmically spaced, 
frequency bins. It is not invertible and can in terms of efficiency be compared to a DFT 
[as opposed to the Fast Fourier Transform (FFT)]. There are approaches to make the CQT 
both computationally more efficient and quasi-invertible, see, e.g., [20, 21]. 

2.2.5 Auditory Filterbanks 

An auditory filterbank is frequently used in psycho-acoustical or physiological ear models. 
It approximates the resolution and selectivity of the human ear. The filterbank's mid-
frequencies are usually computed according to the mel scale (see Sect. 5.1). 

In signal processing applications the usage of auditory filterbanks is not as widespread 
as one might assume. The most obvious reasons are (a) the computational workload pro-
duced by a filterbank with reasonable frequency resolution and (b) the restriction to analy-
sis tasks since the computed frequency domain representation cannot be transformed back 
to the time domain (except for a few carefully designed filterbanks with other limitations). 
In the case of ACA it has not been consistently shown that approaches using a filterbank 
give more reliable results than, e.g., an STFT-based analysis. One possible explanation is 
that in many cases the subject of investigation is not what humans are able to hear in a 
signal but physical properties of the signal. Still the argument that ultimately every audio 
analysis task is about the extraction of perceivable features has merit as well. Auditory 
modeling is a lively subject of research; Lyon et al. review different approaches in [22]. 

2.2.5.1 Gammatone Filterbank 

A widely used auditory filterbank is the so-called gammatone filterbank. A gammatone 
filter has an impulse response of the following form [23, 24]: 

a · (V/s) 0 - 1 · cos (2π · / 4 ) 

h(i) = ^^TTs — ( 2 · 6 5 ) 

Figure 2.11 shows the impulse response of such a gammatone filter with the follow-
ing parametrization: center frequency fc = 1 kHz, bandwidth Δ / = 125 Hz, and 
order O = 4. 

Slaney showed that gammatone filters can be efficiently implemented with cascaded 
second-order filters [25]. A survey of different gammatone filter implementations can be 
found in [26]. 

Figure 2.12 shows the frequency (magnitude) response of a gammatone filterbank as 
computed by the Auditory Toolbox [27] for 20 bands between 100 Hz and 24 kHz. 

2.2.6 Correlation Function 

The correlation function can be used to compute the similarity between two signals at a 
lag η. Given two signals x(i) and y(i), the so-called Cross Correlation Function (CCF) is 
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Figure 2.11 Impulse response of a gammatone filter with a center frequency /c = 1 kHz, a 
bandwidth Δ / = 125 Hz, and an order 0 = 4 

Figure 2.12 Magnitude frequency response of a gammatone filterbank with 20 bands between 
100 Hz and 24 kHz 

defined by 

rxy{,n) = Σ χ{ί) -y(i + v)- (2.66) 

Assuming the input signals are only blocks of K. = ie(n) — i8(n) + 1 samples, we can 
imagine an infinite number of zeros to the right and to the left of the actual samples; 
Eq. (2.66) can still be applied (although in a real application the multiplications with zero 
can obviously be omitted) and the CCF of two blocks of samples is thus 

UM-η 
rxy{v,n)= Σ x{i)-y(i + v) 

i=iB(n) 

and will equal zero for all lags larger than K, = ie{n) —is(n) + l: 

τχν{η,η) = 0 if \η\ > JC. 

(2.67) 

(2.68) 
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Another possible interpretation of the block-wise CCF is the infinite correlation function 
of signals multiplied with a rectangular window % ( i ) : 

oo 

rxy(v,n) = Σ χ(ί)™κ{ί) ■ y(i + v)wR(i + η). (2.69) 
i= — oo 

2.2.6.1 Normalization 

The correlation function is usually multiplied by a normalization factor Xc. If only a block 
of samples of the signals x(i) and y(i) is being considered, then 

λ, = (2.70) 
*e(«) \ / *e(™) \ 

λ , Σ *2ϋ) · Σ y2W 
\ \ i = i 8 ( n ) ) \ ι = ι 8 ( η ) ) 

The number of non-zero multiplications decreases linearly with increasing lag until it is 
only one for η = K — 1. Therefore, the resulting correlation function is shaped triangular 
with the shape's maximum at lag η = 0. This triangular weighting can be avoided by 
taking into account the current lag η for the normalization: 

Acfo) = K 

(AC-N) 

(2.71) 

\ yi=i8(n) 

For large lags η the results will, however, become unreliable due to the limited amount of 
samples from which they are calculated. 

A different way of avoiding the triangular shape of the correlation function is to use 
signal blocks of different sizes, namely a block length of 3/C for the signal x and a block 
length of K samples for the signal y. Typically, the number of samples for x is increased 
by appending K. preceding and succeeding samples, respectively. While this leads to a 
extended theoretical non-zero range of rxy for |jy| < 2AC, the results for |jy| > AC are 
usually discarded. The normalization procedure is in this case unclear, although three 
options present themselves: 

■ normalization per lag requiring the computation of the denominator of Eq. (2.70) for 
every individual lag, 

■ overall normalization by computing the denominator from unequal length sequences, 
and 

• two-stage normalization by first finding the maximum of the unnormalized cross cor-
relation and then computing the denominator for two short length sequences around 
the maximum. 

If only the current block of samples from signal x is available, this block may also be 
copied and pasted to the start and end of this block, resulting in the same amount of 3/C 
samples. If the block of samples from signal x would theoretically be pasted an infinite 
number of times, then the signal would be periodic with AC, which in turn would result in 
the periodicity of the correlation function: rxy{q) = τχυ{η + AC). This is then called the 
Circular Correlation Function (CiCF); the circularity aspects have to be taken into account 
when the CCF is computed in the frequency domain as described in Sect. 2.2.6.4. 
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Autocorrelation Function Properties 

■ Autocorrelation Function (ACF) at lag 0: 
rxx{0, n) = 1 when normalized according to Eq. (2.70), otherwise it is the Root 
Mean Square (RMS) (see Sect. 4.3.1) of the block. 

■ Maximum: 
\τΧχ{η, η)\ < rxx(Q, n) since the signal can at no lag be more similar to itself 
than without lag (η — 0). 

■ Symmetry: 
τχχ{η, n) — τχχ(—η, η). The ACF is symmetric around lag η 
that the calculation of negative lags can be omitted for reasons 
efficiency. 

■ Periodicity: 

= 0. This means 
of computational 

The ACF of a periodic signal will be periodic with the period length of the input 
signal. 

■j L-. | J I I I I ι - _ 

-1 r ' i i r i i i ■ -
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103 ■ η -i 

Figure 2.13 ACF of a sinusoid (top) and white noise (bottom) 

2.2.6.2 Autocorrelation Function 

The ACF is a special case of the correlation function with identical input signals x(i) = 
y(i) and is therefore referred to as τχχ(η). It is a measure of self-similarity, and its proper-
ties are summarized in the box above. 

Figure 2.13 shows the ACF computed with a block of a sinusoid and a block of white 
noise. 

2.2.6.3 Applications 

The CCF can be used to find a specific latency or offset between a signal and the delayed 
signal. The lag of the maximum of the CCF indicates the delay between the signals. A 
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typical example would be a radar signal with its echo coming back after being reflected by 
an obstacle. Finding the maximum of the CCF between the sent and the reflected signal 
should indicate the transmission time and thus the distance. 

A CCF is sometimes also computed between a real signal and a constructed signal to 
find out whether the original signal shows similarities to the synthetic signal. An example 
would be to compute the CCF of the envelope of a drum loop with a series a weighted 
peaks to find a pattern in the signal. 

The ACF is usually used to find periodicities within the signal. A periodic input signal 
will lead to a period ACF with peaks at the length of the period and its integer multiples. 
The ACF can be thus used to find a (fundamental) frequency (see Sect. 5.3.3.2) or to find 
the time interval between beats in music. 

2.2.6.4 Calculation in the Frequency Domain 

Rewriting either the CCF or the ACF as a convolution operation reveals an important prop-
erty: 

oo 

τχχ(τ) = χ(τ) ■ x(t + τ) dr 

—oo 

= X(T)*X(-T). (2.72) 

Using Eqs. (B.7) and (B.25) it can be deduced that 

S{rxx(T)} = Rxx(ju>) 
= 3 {χ(τ) * χ(-τ)} 

= Χ(ίω)-Χ*0ω) 

= \X(}")\2- (2.73) 

This relation is called the Wiener-Khinchin theorem. 
The computation of the ACF in the time domain can thus be replaced by a simple mul-

tiplication in the frequency domain preceded and followed by an FT and an inverse FT, 
respectively. For long blocks this will save computing cycles and reduce computational 
workload when using an FFT algorithm. Note that with blocks of sampled data the result 
will be a circular ACF if the transformed block of data has not been correctly padded with 
zeros before transforming it. More specifically, computing the CCF of two blocks of length 
K. requires a minimum FFT length of 2AC. 

Frequency Domain Compression 
In certain applications such as auditory processing it might be of interest to apply a non-
linear compression function to the magnitude spectrum before transforming it back. Tolo-
nen and Karjalainen named such a combined approach the generalized ACF to be computed 
by (see Sect. 5.3.4.2, [28]) 

rß
xxM=r1{\X{^)\ß}. (2.74) 

A value ß = 2 would result in the normal ACF. 

2.2.7 Linear Prediction 

The idea of linear prediction is to use preceding (sample) values to estimate (or predict) 
future values. In its most common form, the predicted value x(i) is a linear combination 
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of the preceding samples 
o 

x(i) = Yibj-x(i-j). (2.75) 
J' = l 

The filter order O can vary between only a few coefficients and up to thousands of co-
efficients. To allow adaption to a time-variant signal x(i), the predictor filter is usually 
updated for every sample block to ensure good predictive qualities. In that case the process 
is called adaptive linear prediction. 

In order to estimate the coefficients bj from the signal, the usual approach is to minimize 
the power of the prediction error 

eP(i)2 = (x(i)-x(i))2 (2.76) 

= (*(ο-Σ> ·*(*-■')) · ( 2 · 7 7 ) 

The minimum of this power can be found by minimizing dep(i)/dbj. The prediction 
coefficients bj can be computed by solving the following system of equations: 

o 
Σ bj ■ rxx{\j - η\) = -τχχ(η), 1<η<0. (2.78) 

An efficient numeric solution to this system of equations has been presented by Levinson 
and Durbin [29, 30]. 

A signal can only be predicted well if there are statistical relations between the individ-
ual samples. Noise is an example of a signal type that cannot be predicted at all; purely 
periodic signals, however, can theoretically be perfectly predicted. For music signals this 
means that tonal parts of the signal can be predicted well while noisy and non-periodic 
parts such as initial transients cannot be predicted. 

Figure 2.14 plots the original signal (top), the predicted signal (middle), and the predic-
tion error (bottom) for an adaptive predictor of order Ö = 20 and a block length of 2048 
samples. The source signal is an excerpt of a song of popular music. The plot illustrates 
two noteworthy properties of predicted signals. First, the overall power of the prediction 
error is significantly lower than the power of the input signal. This is used in predictive 
waveform coding algorithms such as Adaptive Differential Pulse Code Modulation (AD-
PCM), which basically translates the lower power into a bit rate reduction [31]. Secondly, 
the amplitude of the prediction error is low during the quasi-periodic states of the input 
signal and spikes at transient and thus noisy segments of the signal. 

A detailed introduction to linear prediction and autoregressive modeling can be found 
in [32]. 
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Figure 2.14 Plot of the original signal (top), the signal estimated with linear prediction (mid), and 
the resulting prediction error (bottom) 



CHAPTER 3 

INSTANTANEOUS FEATURES 

Over the last few decades, a set of different widely used features has established itself for 
audio content analysis. Many of these features will be presented in this chapter. However, 
the choice of the specific features used in an algorithm will in the end always be driven 
by the task at hand; this can make the modification of well-known features as well as 
the design of new features advantageous or even mandatory. Therefore, the number of 
possible features used in audio content analysis is probably limitless and only a more or less 
representative set can be presented in the following. The various pre- and post-processing 
options closely related to feature extraction will be covered by this chapter as well. 

The term instantaneous feature, short-term feature, or descriptor is generally used for 
measures that generate one value per (short) block of audio samples. An instantaneous 
feature is not necessarily musically, musicologically, or perceptually meaningful all by 
itself, and it is frequently referred to as a low-level feature. A low-level feature can serve as 
a building block for the construction of higher level features describing more semantically 
meaningful properties of the (music) signal (such as tempo, key, melodic properties, etc.). 

A good example for an instantaneous feature is the magnitude or power level of the 
audio signal extracted on a block-per-block basis. It represents a widely known reduced 
representation of the audio signal. Although simple to extract, it may show characteristics 
usable for the extraction of higher level information. As Fig. 3.1 illustrates with three 
envelope excerpts of length 15 s, the signal categories speech, chamber music, and pop 
music show some variation that may be easily identified by an experienced user. This is, 
of course, not necessarily true for every possible excerpt, but it tells us that some kind of 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 31 
First Edition. Alexander Lerch. 
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc. 
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Figure 3.1 Envelope of excerpts from a typical speech recording (left), a string quartet recording 
(mid), and a pop recording (right) with a length of 15 s 

envelope characteristic may be useful in automatic detection of a signal type or musical 
genre classification. 

Instantaneous features can be categorized using different taxonomies. Probably the 
most obvious categorization is in the computational domain, which in the case of audio 
signals is usually either the time domain or the frequency domain. In several applica-
tions, features are calculated from other features, so the feature domain may be added as 
well. In the MPEG-7 standard, the following feature categories have been used: basic, 
basic spectral, signal parameters, temporal timbral, spectral timbral, and spectral basis 
representations [33]. Peeters categorizes features into the classes temporal shape (e.g., 
waveform-based envelope), temporal (e.g., zero crossing rate, ACF coefficients), energy 
(e.g. global or tonal energy), spectral shape (STFT-based features), harmonic (e.g., har-
monic/noise ratio, tonalness), and perceptual (e.g., modeling human hearing) features [34]. 
Eisenberg uses the three categories time domain, spectral domain, and harmonic features 
[35]. 

As can be seen from these examples it is difficult to find a simple and consistent yet 
practically useful feature categorization. One feature may, for example, fit into more than 
one category because the categories may be overlapping. However, in the end this discus-
sion is in itself only of limited use, so we will just boldly use the following categories for 
our instantaneous features in the following: 

■ statistical properties: features that are commonly used in statistical signal description 
such as standard deviation etc. (see Sect. 3.2), 

■ spectral shape: features describing the shape of the (magnitude spectrum of the) 
STFT (see Sect. 3.3), 

technical/signal properties: features that describe specific technical properties of the 
signal and cannot be categorized in other domains (see Sect. 3.4), and 

■ intensity properties: features closely related to the amplitude or intensity of the audio 
signal such as volume and loudness (see Chap. 4). 
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3.1 Audio Pre-Processing 

The raw audio data is frequently pre-processed before computing instantaneous features 
from the data. The motivation for this pre-processing step is to reduce the amount of audio 
data to be analyzed by omitting unnecessary information or to minimize the impact of 
unwanted information on the extracted features. The standard approaches differ mainly in 
terms of whether the designed algorithm works in 

■ real time, meaning that only the current and past samples or blocks of samples are 
known, or 

■ offline, meaning that all upcoming samples of an audio file are known as well. 

3.1.1 Down-Mixing 

In most of the analysis problems the information of interest can be represented by one 
single audio channel as well as by multiple input channels. For example, the tempo or 
information on the musical style should be extractable from a mono-recording as well as 
from stereo or multi-channel recordings. 

Down-mixing is usually done by simply computing the arithmetic mean as defined by 
Eq. (3.10) over all input channel signals xc{i) per sample i. The number of input channels 
isC. 

e-i 
<i) = rY,*&). (3-D 

It is also possible to apply different weights to different channels; surround channels may, 
for example, have a lower weight than front channels. An alternative to down-mixing 
could be to use only one pre-selected audio channel, however, this may result in loss of 
information if the channels have been mixed to produce a wide spatial image. Some audio 
applications also apply a phase shift of 90° to one channel before down-mixing a stereo 
signal to mono. The reason is to avoid a level boost of components present in all audio 
channels (mono-components). 

3.1.2 DC Removal 

A DC offset — shown by a signal's arithmetic mean significantly different from zero — 
usually does not provide any useful information and may have unwanted impact on the 
feature results. 

3.1.2.1 Offline 

If all audio data XDc{i) of length X is available, it is possible to simply compute the 
arithmetic mean and subtract it from every sample: 

x(i) = xuc(i) ~ ~ Σ XDC(«)- (3.2) 
i=0 

3.1.2.2 Real Time 

A self-evident method to remove the DC part from your signal is to apply a high-pass filter 
to it. Basically any high-pass filter can be used. The simplest method to do so in real time 
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is to apply a differentiator: 

x(i) = x-Dc{i) - XOc{i - 1)· (3.3) 

A differentiator, however, has significant impact on higher frequency components as well. 
This effect can be lessened by low-pass filtering the difference; the resulting DC filter 
would be 

x(i) = (1 - a) ■ (xDcii) - xuc(i - 1)) + a ■ x(i - 1). (3.4) 

Another possibility is to use a long MA filter (see Sect. 2.2.1.1) of a length O which 
provides a sufficiently reliable estimate of the arithmetic mean to be subtracted from the 
input signal: 

i + o / a - l 

x{i) = ZDCW - -Q Σ XOc{j)- (3.5) 
J = t - 0 / 2 

3.1.3 Normalization 

In order to extract features independently of the amplitude scaling of the input signal, the 
signal can be normalized to have a pre-defined (maximum) amplitude or power. 

3.1.3.1 Offline 

A simple and frequently used method to normalize an audio signal is to detect the over-
all maximum of its absolute sample values and scale the signal so that this maximum's 
absolute value is mapped to 1: 

x(i) = X
(frw (3-6) 

This approach results in a normalized magnitude but does not warrant equal loudness of 
different input files. Furthermore, the normalization may be influenced by signal distor-
tions such as the clicks and crackles of a vinyl recording. In this case, the normalization to 
the maximum click amplitude will result in an "incorrect" scaling of the music data. 

The alternative is to use some other reference than the maximum for the derivation of 
the scaling factor such as an RMS (see Sect. 4.3.1) or a loudness measurement with large 
integration time (see Sect. 4.5). In this case, additional processing may be necessary in 
order to avoid potential clipping of the scaled signal. 

3.1.3.2 Real Time 

Normalizing a signal in a real-time context is difficult. It can be done with algorithms 
for automatic gain control or compressors and limiters monitoring the instantaneous input 
signal characteristics (e.g., the RMS or the peak level) and aiming to adjust a time-variant 
gain value according to it. 

3.1.4 Down-Sampling 

Down-sampling requires the application of a sample rate conversion algorithm which con-
verts the input sample rate / s to a lower sample rate /<j. Down-sampling thus reduces both 
the amount of audio samples and the bandwidth of the resulting audio signal. 
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The easiest way to down-sample is to reduce the sample rate by an integer factor I. The 
output sample rate is 

/d = y - (3.7) 

If we just pick every Zth sample, then the down-sampled signal x^ is 

xd(i) = x(l-i). (3.8) 

Taking into account the sampling theorem as given in Eq. 2.9 and the time scaling property 
of the spectrum as given in Eq. (2.54) it becomes clear the aliasing will occur if the input 
signal x(i) contains frequency components higher than /d/2. In order to ensure artifact-
free down-sampling a low-pass filter has to be applied to the input signal to remove any 
frequency components higher than fs/21. Sample rate conversion with non-integer factors 
is based on the same principles. The factor can be written as the ratio of two integer factors 
s/i so that the signal can first be up-sampled by factor s and the down-sampled by factor I. 
In between the two resampling steps it is required to apply a low-pass filter which ensures 
both the reconstruction of the up-sampled signal and the suppression of aliasing artifacts 
in the down-sampled signal. It is possible to use various combinations of interpolation 
algorithms and low-pass filters for down-sampling a signal. One example for such a band-
limited interpolation has been presented by Smith and Gösset and is usually referred to as 
sine interpolation [36]. 

3.1.5 Other Pre-Processing Options 

As with the selection of appropriate features itself, the pre-processing options will always 
be adjusted to the application in mind. Every pre-processing which improves the algo-
rithm's accuracy, its stability, or minimizes its computational workload is beneficial. In 
addition to the presented pre-processing options it is, for example, also common to attenu-
ate the level of any unwanted frequency region by applying a filter to the signal. 

3.2 Statistical Properties 

Various methods describing the properties of a (time-invariant) properties of a signal are 
well-established and frequently used. These measures can be applied to both, the time-
domain signal block as well as the spectrum. While the definitions below use x(i) as input 
signal, it could be substituted by X(k, n), by a series of feature values v(n) or by any other 
signal of interest. 

Theoretically, the statistical properties presented below require a signal of infinite 
length, however, in practical applications they can be assumed to be sufficiently accurate 
if the block is long enough. The block length will be denoted as 

lC = ie(n)-is(n) + l. (3.9) 

In order to simplify definitions, there will be no differentiation between the theoretically 
correct property or measure (for the signal with infinite length) and its estimate (from a 
finite length signal block). 
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3.2.1 Arithmetic Mean 

The arithmetic mean is the average of the input signal (block). It is computed by 

μχ{η) 
1 

* e ( " ) 

i=is(n) 

(3.10) 

The result of the arithmetic mean is a value between the minimum and maximum input 
signal value. The unit corresponds to the unit of the input signal. For symmetric PDFs, 
the arithmetic mean will be the (abscissa) position of the symmetric axis. For example, a 
time domain audio signal usually has a mean value of approximately 0; if the signal has 
a DC offset, the mean will indicate the amount of the DC offset. When the PDF is not 
symmetric, then the calculation of the arithmetic mean is of limited use. In this case, the 
computation of the median (see Sect. 3.2.10) or the centroid (see Sect. 3.2.5) of the PDF 
might be more meaningful measures of the average. 

3.2.2 Geometric Mean 

The geometric mean is an average measure for sets of positive numbers that are ordered on 
a logarithmic scale. It can be computed with 

Mx(0,n) 
te(n) 

Π x(0 
\ i=is(n) 

I , *e(") , 
exp F Σ log K*)] · 

(3.11) 

(3.12) 
i=is(n) 

Equation (3.12) is equivalent to Eq. (3.11) but avoids problems with computational ac-
curacy for long blocks of data and large values at the computational cost of applying a 
logarithm to each signal value. The result of the geometric mean is a value between the 
minimum and maximum input signal value. The unit corresponds to the unit of the input 
signal. 

3.2.3 Harmonic Mean 

The harmonic mean is an average measure appropriate for averaging rates. It is 

Mx(-l,n) 
K 

ie(n) 

Σ V*(o 
i=t„(n) 

(3.13) 

3.2.4 Generalized Mean 

A generalized expression for the calculation of different measures of mean is 

Μχ(β,η) 
ie(n) 

(3.14) 
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Different values of ß then lead to different measures: 

■ ß = 1: arithmetic mean, (Sect. 3.2.1) 

■ ß = 2: quadratic mean, or RMS (see Sect. 4.3.1) 

■ ß = — 1: harmonic mean (Sect. 3.2.3) 

■ ß —> 0: geometric mean, (Sect. 3.2.2) 

■ ß —> — oo: minimum 

■ /3 —» oc: maximum 

3.2.5 Centroid 

The centroid computes the Center of Gravity (COG) of a block of input values. It is 
computed by the index-weighted sum of the values divided by their unweighted sum: 

*e(n) 

Σ (i - is(ri)) ■ x(i) 
V°W = ΊΜ ■ ( 3 · 1 5 ) 

i=iB(n) 

The result will be a value in the range of 0 < vc(n) < K, — 1. For more information, see 
Sect. 3.3.3 on the spectral centroid. 

3.2.6 Variance and Standard Deviation 

Both the variance and the standard deviation measure the spread of the input signal x(i) 
around its arithmetic mean. The variance σ2

χ is defined by 

σχ(») = ^ Σ (*(*)-M*(n))2· (3-16) 

Strictly speaking this is the so-called biased estimate of the variance in contrast to the 
unbiased estimate 

<b(n) = £3I Σ {<i)-^(n)f. (3.17) 

In case of μχ{η) = 0, the variance equals the power of the observed block of samples. 
The standard deviation σχ can be computed directly from the variance 

σχ(η) = v ^ I R - (3-18) 

In case of μχ (η) = 0, the standard deviation equals the RMS of the observed block of 
samples (see Sect. 4.3.1). The result of the standard deviation is in the range 

0 < σχ(η) < max \x(i)\-
ie[U(n);ie(n)] 



3 8 INSTANTANEOUS FEATURES 

Table 3.1 Spectral skewness for the three prototypical spectral shapes silence (zero magnitude at 
all bins), flat (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape «ssk 
silence not def. 
flat mag. not def. 
single peak (@ ks) not def. 

The standard deviation is 0 for silent or constant input signals. Its unit corresponds to the 
input signal's unit. 

Although the computation of standard deviation or variance of audio samples might be 
of interest in specific cases, it is more common in ACA to compute them from a series of 
features. 

3.2.7 Skewness 

The skewness is referred to as the third central moment of a variable divided by the cube 
of its standard deviation. It is defined by 

ie(n) 

vsk{n) = ^ ( ^ . f c Σ W O - M « ) ) 3 · (3·19) 
x i—ia{n) 

The skewness is a measure of the asymmetry of the PDF. It will be 0 for symmetric dis-
tributions, negative for distributions with their mass centered on the right (left-skewed), 
and positive for distributions with their mass centered on the left (right-skewed). Note that 
while every symmetric distribution has zero skewness the converse is not necessarily true. 
The range is unrestricted. It is not defined for signals with a standard deviation of 0. 

3.2.7.1 Spectral Skewness 

The spectral skewness measures the symmetry of the distribution of the spectral magnitude 
values around their arithmetic mean. It is defined by 

2 * E \ | * ( M ) I - A W 3 

vssk{n) = — — — § . (3.20) 
K ' σ\χ\ 

For all features computed from the spectrum we will present the feature output for three 
prototypical spectral shapes in a table; these shapes are 

■ silence: |X(fc,n)| = 0 

■ white noise \X(k, n)\ = const and 

■ a single spectral peak 

\X(k,n)\ = 0 | ^ a V \X(k,n)\ = A\k=ks. (3.21) 

The spectral skewness is, unfortunately, not a good first example as it is not defined for 
either of these three signals (see Table 3.1). 
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Figure 3.2 Spectrogram (top), waveform (bottom background), and spectral skewness (bottom 
foreground) of a saxophone signal 

Figure 3.2 shows the spectral skewness for an example signal. During signal pauses the 
spectral skewness drops since the spectral magnitudes are similar, while at positions with 
high magnitudes at the fundamental frequency the magnitude spectrum is significantly 
skewed. The spectral skewness increases, for example, in the region between 12 s and 15 s 
due to the strong decrease of the higher harmonics compared to the lower harmonics. 

3.2.8 Kurtosis 

The kurtosis is referred to as the fourth central moment of a variable divided by the fourth 
power of the standard deviation: 

vK(n) ^ρχΣ, (*W-**.(»)) -3- 0.22) 
2—1s\fl) 

The kurtosis is a measure of "non-Gaussianity" of the PDF; more specifically, it indicates 
the flatness (and peakiness, respectively) of the input values' distribution compared to the 
Gaussian distribution. It equals 0 for a Gaussian distribution (mesokurtic), is negative for 
a flatter distribution with a wider peak (platykurtic), and positive for distributions with a 
more acute peak (leptokurtic). 

The range is not restricted, and similar to the skewness, the kurtosis is not defined for 
signals with a standard deviation of 0. 

3.2.8.1 Spectral Kurtosis 

The spectral kurtosis measures whether the distribution of the spectral magnitude values is 
shaped like a Gaussian distribution or not. It is defined by 

2KJz\\X(k,n)\-plxiy 
vsK.(n) = — -, 3. 

£ · , 
(3.23) 

\x\ 
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Table 3.2 Spectral kurtosis for the three prototypical spectral shapes silence (zero magnitude at all 
bins), flat (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape «SK 
silence not def. 

flat mag. not def. 
single peak (@ ks) not def. 

Figure 3.3 Spectrogram (top), waveform (bottom background), and spectral kurtosis (bottom 
foreground) of a saxophone signal 

Table 3.2 shows that the spectral kurtosis is, similar to the spectral skewness, not defined 
for the three prototype signals. 

Figure 3.3 shows the spectral kurtosis for a saxophone signal. While during the notes 
high values can be observed, indicating a very peaked distribution, the spectral kurtosis 
drops significantly during pauses. 

3.2.9 Generalized Central Moments 

The measures variance, skewness, and kurtosis are directly derived from the so-called cen-
tral moments of different order. A central moment of order O is defined by 

»e(n) , v O 

ΊχΑη)= Σ i W - M " ) ) ■ (3·24) 
i=is(n) ^ ' 

3.2.10 Quantiles and Quantile Ranges 

Quantiles can be computed from the PDF and can be used to divide the PDF into (equal 
sized) subsets. They are helpful in the description of asymmetric distributions or distribu-
tions with so-called outliers, occasional untypical values far from the median (see below). 

0.5 

0.Ξ5 

0 Ξ 
-0.25 

-0,5 
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If the PDF is divided into two quantiles, it is split into two parts each containing 50% of 
the overall number of observations. The position of the border between those two quantiles 
will be referred to as the median Qx(0.5): 

Qx(0.5)=x (3.25) 
/ Px(y)dy=0.5 

which equals the arithmetic mean in the case of symmetric distributions. Similarly, if the 
PDF is partitioned in four quantiles (so-called quartiless), the quantile borders would be 
Qx(0.25), Qx(0.5),andQx(0.75). 

In many cases, quantile ranges are of specific interest for the simplified description of 
a distribution's shape. The range spanned by 90% of the samples can be computed by 
AQX(0.9) = Qx(0.95) - Qx(0.05). This should be a good measure of the signal's range 
while discarding infrequent outliers, namely the upper and lower 5%. 

The overall range of a signal is 

AQX(1.0) = min (Qx(1.0)) - max (Qx(0)). (3.26) 

3.3 Spectral Shape 

Most of the features describing the spectral shape of an audio signal are closely related to 
the timbre of this signal. The timbre of a sound is referred to as its sound color, its quality, 
or its texture. Besides pitch and loudness, timbre is considered as "the third attribute of 
the subjective experience of musical tones" [37]. Timbre can be explained by two closely 
related phenomena, which will be referred to as timbre quality and timbre identity. The 
timbre quality allows humans to group together different sounds originating from the same 
source such as two recordings made with the same instrument. Timbre identity enables the 
differentiation of two sounds with the same tone characteristics (loudness, pitch if avail-
able) played on two instruments. Thus, the quality represents general timbre properties of 
a sound ("sounds like a violin"), while the timbre identity refers to instrument specifics 
("one violin sounds different from the other"). 

Loudness and pitch are unidimensional properties, as sounds with different loudness or 
pitch can be ordered on a single scale from quiet to loud and low to high, respectively. 
Timbre is a multi-dimensional property [38, 39]; this complicates its definition. A good 
summary over the various attempts of the definition of the term timbre has been compiled 
by Sandell.1 The most prominent example is probably the definition of the American 
Standards Association from 1960 that defined timbre as "that attribute of auditory sensation 
in terms of which a listener can judge that two sounds similarly presented and having the 
same loudness and pitch are dissimilar" [40]. This definition has been criticized repeatedly 
by researchers mainly because according to Bregman [41] it 

■ does not attempt to explain what timbre is, but only what timbre is not, i.e., loudness 
and pitch, and 

■ implies that timbre only exists for sounds with a pitch, implicating that, for example, 
percussive instruments do not have a timbre. 

1 Sandell, Greg: Definitions of the word "Timbre", http://www.zainea.com/timbre.htm. Last retrieved on Nov. 16, 
2011. 
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Early uses of the term timbre can be found in Blumenbach [42]. Helmholtz was probably 
the first to detect the dependency between the timbre of a sound and the relative amplitudes 
of the harmonics during the second half of the 19th century [43]. Although he noted that 
other influences play a role in defining the quality of a tone such as the "beginning" and 
"ending" of a sound, he restricted his definition of timbre ("Klangfarbe") to the harmonic 
amplitude distribution only. 

Stumpf extended the definition of timbre by two more attributes [44]. He named the 
relative amplitude of harmonics, the form and length of the attack time and note endings, 
and additional sounds and noise as the third timbre-determining component. 

Seashore restricted the term timbre during the first half of the 20th century to the har-
monic structure that "is expressed in terms of the number, distribution, and relative in-
tensity of its partials," but he additionally introduced the term sonance, referring to "the 
successive changes and fusions which take place within a tone from moment to moment" 
[45]. This distinction did, however, not find broad acceptance in the research community. 

Nowadays, timbre is understood as the phenomenon that takes into account both spec-
tral patterns and temporal patterns [39, 46]. Timbre perception is obviously influenced by 
numerous parameters of both the onset properties such as rise time, inharmonicities during 
the onset, etc. and numerous steady-state effects such as vibrato, tremolo, pitch instability, 
etc. [37], In the following, we will restrict ourselves to measures of spectral shape since 
most of the features describing "temporal timbre" only work for individual monophonic 
notes as opposed to complex time-variant mixtures of signals. The presented features rep-
resent spectral shape and are technically motivated; therefore, there is not necessarily a 
direct relation to the human perception of timbre. 

3.3.1 Spectral Rolloff 

The spectral rolloff is a measure of the bandwidth of the analyzed block n of audio samples. 
The spectral rolloff VSR(«) is defined as the frequency bin below which the accumulated 
magnitudes of the STFT X(k, n) reach a certain percentage κ of the overall sum of mag-
nitudes: 

VSRijl) «„-I (3-27) 
Σ, \X(k,n)\ = K- Σ, \X(k,n){ 

with common values for κ being 0.85 (85%) or 0.95 (95%). 
The result of the spectral rolloff is a bin index in the range 0 < ^ S R ( " ) < Kfo — 1. It 

can be converted either to Hz with Eq. (2.44) or to a parameter range between zero and 
one by dividing it by the STFT size K/2 — 1. Low results indicate insignificant magnitude 
components at high frequencies and thus a low audio bandwidth. 

Table 3.3 shows the results for the spectral rolloff for three prototype spectral shapes. 
The behavior of the spectral rolloff at pauses in the input signal may require special con-
sideration. While the result will equal zero for absolute silence, it may be quite large for 
noise, including pauses with low-level noise. 
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Table 3.3 Spectral rolloff for the three prototypical spectral shapes silence (zero magnitude at all 
bins), flat (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape l»SR 

silence 0 
flat mag. κ ■ κ/·ι — 1 
single peak (@ ks) ks 

10 

Figure 3.4 Spectrogram (top), waveform (bottom background), and spectral rolloff (bottom 
foreground) of a saxophone signal 

Figure 3.4 shows the spectral rolloff for an example signal. It is comparably low in 
the presence of a tone and higher — although somewhat erratic — during the noise-filled 
pauses. 

3.3.1.1 Common Variants 

Spectral bins representing very low or very high frequencies may in many cases be con-
sidered to be unnecessary or unwanted for the analysis. Therefore, both sums in Eq. (3.27) 
may start and stop at pre-defined frequency boundaries /„,,„, /maX: 

VSR,Ai(n) = i i M/max) 
Σ, \X(k,n)\=K- Σ, \X(k,n)\ 

fc = M/ m i „ ) * = M/min) 

(3.28) 

It is also common to use the power spectrum instead of the magnitude spectrum: 

^SR,Pow(") = i 
± ^(k^f^jz \x(k,n)\2 (3.29) 
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Figure 3.5 Spectrogram (top), waveform (bottom background), and spectral flux (bottom 
foreground) of a saxophone signal 

3.3.2 Spectral Flux 

The spectral flux measures the amount of change of the spectral shape. It is defined as the 
average difference between consecutive STFT frames: 

vSF(n) 

/AC/2-1 

' Σ {\X(k,n)\-\X(k,n-l)\Y 
k=0 

K. / 2 
(3.30) 

The spectral flux can be interpreted as a rudimentary approximation to the sensation rough-
ness which according to Zwicker and Fasti can be modeled as quasi-periodic change or a 
modulation in the excitation pattern levels [47]. 

The result of the spectral flux is a value within the range 0 < « S F ( " ) < A with A 
representing the maximum possible spectral magnitude. Thus, its output range depends on 
the normalization of the audio signal and the frequency transform. Low results indicate 
steady-state input signals or low input levels. 

Figure 3.5 shows the spectral flux for an example signal. It is low during the stationary 
parts of the signal, such as during a note or a pause, and spikes at pitch changes and at the 
beginning of a new note. 

3.3.2.1 Common Variants 

The definition of the spectral flux above is the Euclidean distance of the two spectra as 
given in Eq. (5.59). The distance norm can also be generalized: 

vsF(n,ß) = 

K/2-1 
I Σ {\X(k,n)\-\X(k,n-l)\) 

fe=0 

ß 

K/2 
(3.31) 

Typical values for ß range between [0.25; 3], with ß = 1 [manhattan distance, Eq. (5.60)] 
and ß = 2 [Euclidean distance, Eq. (5.59)] being the most common. 
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In some applications such as note onset detection, only an increase in spectral energy is 
of interest; in these cases, the difference magnitude spectrum is computed2 

AX(k,n) = \X(k,n)\-\X(k,n-l)\ (3.32) 

and all negative differences AX(k, n) < 0 can be set to zero before summation while 
positive differences will be left unaltered. This is called Half-Wave Rectification (HWR). 
Mathematically the HWR of a signal x is 

HWR(x) = ^ ± _ N . (3.33) 

Alternative approaches can be used to derive a measure of spectral change. An example is 
the computation of the standard deviation of the difference magnitude spectrum AX(k, n): 

2 K/2-i 
- Σ ( Δ Χ ( Μ ) - / Ζ Λ χ ) 2 . (3.34) 
* " fc=o 

Another variant is to compute the logarithmic difference. This has the advantage of making 
the resulting feature independent of magnitude scaling but the disadvantage of zero-mean 
frames having to be handled individually: 

/ x 2 *V^\ ( l*(M)l \ ,„„ex 

tW«) = £ Σ^{^;\). (3-35) 

3.3.3 Spectral Centroid 

The spectral centroid represents the COG of spectral energy (compare Sect. 3.2.5 for the 
time domain centroid). It is denned as the frequency-weighted sum of the power spectrum 
normalized by its unweighted sum: 

/C/2-1 

Σ fc-|X(fc,n)|2 

vsc{n) = ^"/°2_1 · (3.36) 

fc=0 

In the literature, numerous indications can be found that this position of energy concen-
tration is well correlated with the timbre dimension brightness or sharpness [48-54]. 

The result of the spectral centroid is a bin index within the range 0 < use (n) < V 2 ~~ 1 · 
It can be converted either to Hz by using Eq. (2.44) or to a parameter range between zero 
and one by dividing it by the STFT size £/2 — 1. Low results indicate significant low-
frequency components and insignificant high frequency components and low "brightness." 

Table 3.4 shows the results for the spectral centroid for three prototype spectral shapes. 
The behavior of the spectral centroid at pauses in the input signal requires special consid-
eration as it is not defined for silence and will be comparably large for (low-level) noise. 

Figure 3.6 shows the spectral centroid for an example signal. In the case of this mono-
phonic signal one can see how the spectral centroid moves with the fundamental frequency 
during tonal parts, spikes at initial transients, and is high during pauses. 

2 Another distance measure can be used as well. 

VSF,a{n) 
\ 
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Table 3.4 Spectral centroid for the three prototypical spectral shapes silence (zero magnitude at all 
bins),̂ tar (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape WSC 

silence 
flat mag. 
single peak (@ ks) 

not def. 
IC/2-1 

2 

Ks 

Figure 3.6 Spectrogram (top), waveform (bottom background), and spectral centroid (bottom 
foreground) of a saxophone signal 

3.3.3.1 Common Variants 

The magnitude spectrum may be used instead of the power spectrum: 

^SC,m(n) 

AC/2-1 

Σ k-\X(k,n) 
fc=o 
JV/2-1 

Σ \X(k,n)\ 
k=0 

(3.37) 

Zwicker and Fasti presented a psycho-acoustic model of sharpness that uses the excitation 
patterns to compute the sharpness [47]. It differs from Eq. (3.36) mainly in two points. 
First, it is computed on a non-linear bark scale, namely the so-called critical band rate 
which models the non-linearity of human frequency perception (compare Sect. 5.1.1.2). 
Second, it utilizes a psycho-acoustic loudness measure instead of the spectral power; this 
loudness model takes into account masking and other perceptual effects. While ignor-
ing the difference between loudness and power, the idea of a "more human" non-linear 
frequency scale has been adapted for the definition of the spectral centroid in the MPEG-
7 standard [33]. The critical band rate is approximated by applying a logarithm to the 
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Table 3.5 Spectral spread for the three prototypical spectral shapes silence (zero magnitude at all 
bins),/of (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape i>ss 
silence not def. 

K/4-1 

flat mag. */κ ■ £ (ΚΑ - kf 

single peak (@ ks) 

frequencies with a reference point of / r e f = 1000 Hz: 

/ C / 2 - 1 . . 

_Σ log2(fj)-|*(fc,n)|2 

vsc,\og{n) = -^j^ . (3.38) 

Σ l*(M)l2 

fc = fc(/mi„) 

In this specific MPEG-definition, all bins corresponding to frequencies below 62.5 Hz are 
combined to one band with a mid-frequency of 31.25 Hz. 

3.3.4 Spectral Spread 

The spectral spread, sometimes also referred to as instantaneous bandwidth, describes the 
concentration of the power spectrum around the spectral centroid and is a rather technical 
description of spectral shape. It can be interpreted as the standard deviation of the power 
spectrum around the spectral centroid. Its definition is 

vSs(n) 

\ 

Jz\k-vSc{n)Y-\X{k,n)\^ 
-^=5 . (3.39) 

A C / 2 - 1 V ' 

Σ l*(M)|2 

fc=0 

There are indications that the spectral spread is of some relevance in describing the per-
ceptual dimensions of timbre [52]. 

The result of the spectral spread is a bin range of 0 < «ss (") < V4· ^ c a n be converted 
either to Hz by using Eq. (2.44) or to a parameter range between zero and one by dividing it 
by K/4. Low results indicate the concentration of the spectral energy at a specific frequency 
region. As the spectral centroid, the spectral spread is not defined for audio blocks with 
no spectral energy (silence) and will result in high values if the input signal contains (low-
level) white noise. 

Table 3.5 shows the results for the spectral spread for three prototype spectral shapes. 
Figure 3.7 shows the spectral spread for an example signal. Most prominent are the high 
feature values during pauses and at transients; the spectral spread is low during notes for 
this monophonic signal. When the higher harmonics slowly disappear between 12 and 15 s, 
the spread of the signal decreases accordingly. 

3.3.4.1 Common Variants 

The definition of the spectral spread has to conform with the definition of the spectral 
centroid. If the spectral centroid has been calculated from the magnitude spectrum instead 
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Figure 3.7 Spectrogram (top), waveform (bottom background), and spectral spread (bottom 
foreground) of a saxophone signal 

of the power spectrum, then the spectral spread should use the magnitude spectrum as well. 
In the case of the MPEG-7 definition, a logarithmic frequency scale has to be used for the 
calculation of the spectral spread as well: 

vss,\oS{n) = 

N 

Σ1 k(Ä)-^c(n))2 ·^,«) 
fc=fc(/mi„) V V ' '_ 

K / 2 - 1 

Σ l^(Ä,n)|2 

fc=fe(/min) 

(3.40) 

3.3.5 Spectral Decrease 

The spectral decrease estimates the steepness of the decrease of the spectral envelope over 
frequency. It is defined by [34] 

VSD(«) 

Κ'γ^ \-{\X{k,n)\-\X{^n)\) 
fc=i 

Σ \X(k,n)\ 
fc=l 

(3.41) 

The result of the spectral decrease is a value «SD(W) < 1· Low results indicate the concen-
tration of the spectral energy at bin 0. The spectral decrease is not defined for audio blocks 
with no spectral energy (silence). 
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Table 3.6 Spectral decrease for the three prototypical spectral shapes silence (zero magnitude at 
all bins),/toi (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape VSO 

silence not def. 
flat mag. 0 
single peak (@ ks)

 1/k, 
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Figure 3.8 Spectrogram (top), waveform (bottom background), and spectral decrease (bottom 
foreground) of a saxophone signal 

Table 3.6 shows the results for the spectral decrease for three prototype spectral shapes. 
Figure 3.8 shows the spectral decrease for an example signal. It is difficult to draw any 

conclusions from the graph except that the feature behaves erratically during the pauses. 

3.3.5.1 Common Variants 

Reducing the spectral analysis range might lead to more meaningful results in some cases. 
This can be done by using a lower and upper bound fci and ku, respectively: 

^ S D W 

Σ H | X ( f c , n ) | - | X ( f c i - l , n ) | ) 
fc=fci 

Σ \X{k,n)\ 
(3.42) 

3.3.6 Spectral Slope 

The spectral slope is — similar to the spectral decrease — a measure of the slope of the 
spectral shape. It is calculated using a linear approximation of the magnitude spectrum; 
more specifically, a linear regression approach is used. In the presented form, the linear 
function is modeled from the magnitude spectrum. Its slope is then estimated with the 
equation 
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Table 3.7 Spectral slope for the three prototypical spectral shapes silence (zero magnitude at all 
bins), flat (same amplitude at all bins), and peak (all bins except one have zero magnitude, the 
magnitude at the bin ks equals A) 

Spectral Shape fssi 

silence 
flat mag. 

single peak (@ ks) 

0 

0 

{ks - y 4 ) ■ (A - *A/K) 

Σ ^ Ο _ 1 ( * - Μ * ) 2 

ττ 4 

x10 10 15 20 25 

Figure 3.9 Spectrogram (top), waveform (bottom background), and spectral slope (bottom 
foreground) of a saxophone signal 

vss\{n) 

Ki:\k-ßk)(\X(k,n)\-ß{xl) 
k=0 

K / 2 - 1 

fc=0 

K / 2 - 1 K / 2 - 1 K / 2 - 1 

K Σ fc-|^(fc,n)|- Σ ^ · Σ \X(k,n)\ 
k=0 k—0 k=0 

c / 2 - 1 c / 2 - 1 

AC · Σ fc2 - Σ k 
fc=0 fc=0 

(3.43) 

(3.44) 

The result of the spectral slope depends on the amplitude range of the spectral magni-
tudes. 

Table 3.7 shows the results for the spectral slope for three prototype spectral shapes. 
Figure 3.9 shows the spectral slope for an example signal. It is maximal for the noisy 

pauses and increases with disappearing higher harmonics. 
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Figure 3.10 Spectrogram (top) and mel frequency cepstral coefficients 1-4 (bottom) of a saxophone 
signal 

3.3.7 Mel Frequency Cepstral Coefficients 

The Mel Frequency Cepstral Coefficients (MFCCs) can be seen as a compact description 
of the shape of the spectral envelope of an audio signal. The jth coefficient ^MFCC (n) c a n 

be calculated with 

7 M F C C (n) = Σ log (\X'(k',n)\) ■ cos (j ■ (V - ±) ^j (3.45) 

with \X'(k', n)\ being the mel-warped magnitude spectrum at the signal block. The calcu-
lation is based on the following steps: 

1. computation of the mel-warped (see Sect. 5.1.1.1) spectrum with a bank of overlap-
ping band-pass filters, 

2. taking the logarithm of the magnitude of each resulting band, and 

3. calculating the Discrete Cosine Transform (DCT) on the resulting bands. The DCT 
equals the real (cosine) part of an FT. 

The MFCCs have been widely used in the field of speech signal processing since their 
introduction in 1980 [55] and have been found to be useful in music signal processing 
applications as well [56-59]. In the context of audio signal classification, it has been shown 
that a small subset of the resulting MFCCs as shown in Fig. 3.10 already contains the 
principal information [60, 61] — in most cases the number of used MFCCs varies in the 
range from 4 to 20. 

The calculation is closely related to the calculation of the cepstrum as introduced in 
Sect. 5.3.3.7 as it transforms a logarithmic spectral representation. The main difference to 
the standard cepstrum is the use of a non-linear frequency scale (the mel scale) to model 
the non-linear human perception of pitch and the use of the DCT instead of a DFT. The 
mel-warped basis functions for the DCT are displayed in Fig. 3.11. 
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Figure 3.11 Warped cosine-shaped transformation basis functions for the computation of MFCC 
coefficients (order increases from left to right and from top to bottom) 
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Table 3.8 Properties of three popular MFCC implementations 

Property DM HTK SAT 
Num. filters 

Mel scale 

Freq. range 

Normalization 

20 

lin/log 

[100; 4000] 

Equal height 

24 

log 

[100; 4000] 

Equal height 

40 

lin/log 

[200; 6400] 

Equal area 

0.015 -

0.01 

0.005 ■ 

Figure 3.12 Magnitude transfer function of the filterbank for MFCC computation as used in 
Slaney's Auditory Toolbox 

The mel warping of the spectrum frequently leads to the conclusion that the MFCCs 
are a "perceptual" feature. This is only partly true as there is no psycho-acoustic evidence 
to motivate the application of the DCT. Also, there is no direct correlation between the 
MFCCs and known perceptual dimensions. 

The result of the MFCCs depends on the amplitude range of the spectral power. The 
zeroth MFCC ^MFCC (n) ^s usually ignored as it has no relevance in describing the timbre. 
It is simply a scaled measure of the energy in decibel. The MFCCs are not defined for 
silence as input signal. 

The first four coefficients are shown in Fig. 3.10. Despite their proven usefulness it is 
difficult to identify non-trivial relationships to the input signal. 

3.3.7.1 Common Variants 

The differences between MFCC implementations can be found mainly in the computation 
of the mel-warped spectrum, i.e., in number, spacing, and normalization of the filters. 
Table 3.8 shows the differences between the three most popular MFCC implementations, 
the original introduced by Davis and Mermelstein (DM) [55], the implementation in the 
HMM Toolkit (HTK) software [62], and the implementation in Slaney's Auditory Toolbox 
(SAT) [27]. 

Figure 3.12 shows the triangular filter shapes as used in the Slaney's Auditory Toolbox. 
Section 5.1.1.1 lists the typical mel scale models used for the non-linear frequency 

warping. It is also possible to use other filter shapes or to compute MFCCs directly from 
the power spectrum by using warped cosine basis functions as shown in Fig. 3.11 [63]. 
The power spectrum might also be approximated by other means such as through linear 
prediction coefficients. 
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Table 3.9 Spectral crest factor for the three prototypical spectral shapes silence (zero magnitude 
at all bins),^ta (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape I>TSC 

silence not def. 
flat mag. 2/κ 
single peak (@ ks) 1 

3.4 Signal Properties 

3.4.1 Tonalness 

Measures of tonalness estimate the amount of tonal components in the signal as opposed to 
noisy components. Tonalness is thus a measure related to sound quality. The somewhat un-
usual term tonalness is used here to distinguish this measure from the musical term tonality 
which describes a specific harmonic or key context. No specific measure of tonalness has 
itself established as de-facto standard, meaning that there are various different approaches 
to measure the tonalness of a signal. They have in common that for a signal considered to 
be tonal, they expect a high amount of periodicity and a low amount of noisy components. 
In that sense, the most tonal signal is a sinusoidal signal, and the most non-tonal signal is 
(white) noise. As an alternative to measuring the tonalness one could also find a feature 
for the noisiness which would be an "inverse" tonalness measure. 

3.4.1.1 Spectral Crest Factor 

A very simple measure of tonalness compares the maximum of the magnitude spectrum 
with the sum of this magnitude spectrum, a measure which will be referred to as spectral 
crest factor. It is defined by 

max \X(k,n)\ 

VTsc{n) = -^~zi · (3.46) 

Σ \X{k,n)\ 
fc=0 

The result of the spectral crest factor is a value between 2/JC < vrsc(n) < 1. Low results 
indicate a flat magnitude spectrum and high results indicate a sinusoidal. The spectral crest 
factor is not defined for audio blocks with no spectral energy (silence). 

Table 3.9 shows the results for the spectral crest factor for three prototype spectral 
shapes. 

Figure 3.13 shows the spectral crest factor for an example signal. It is low for noisy 
parts during the pauses and higher during the tonal passages. With decreasing amplitude 
of higher harmonics the spectral crest factor increases as the spectral energy is more and 
more concentrated at a single spectral bin. 

Common Variants 
A common variant is to replace the sum in the denominator by the arithmetic mean of the 
magnitude spectrum. This scales the range of the spectral crest factor. 
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Figure 3.13 Spectrogram (top), waveform (bottom background), and tonalness feature spectral 
crest factor (bottom foreground) of a saxophone signal 

Table 3.10 Spectral flatness for the three prototypical spectral shapes silence (zero magnitude at 
all bins), flat (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape VTl 

silence not def. 
flat mag. 1 
single peak (@ ks) 0 

3.4.1.2 Spectral Flatness 

The spectral flatness is the ratio of geometric mean and arithmetic mean of the magnitude 
spectrum. It is defined by [64] 

ντ((η) = 

K'\P.ilV(M)l e x p ( V - Σ \ag{\X{k,n)\) 
V fc=o \ k=o , 

2A> Σ \X(k,n)\ 
fe=0 

2/κ· i:V(M)i 
fe=0 

(3.47) 

The latter formulation uses the arithmetic mean of the logarithmic magnitude spectrum in 
the numerator in order to avoid problems with computing accuracy. 

The result of the spectral flatness is a value larger than 0. The upper limit depends on 
the maximum spectral magnitude. Low results hint toward a non-flat — possibly a tonal — 
spectrum, while high results indicate a flat (or noisy) spectrum. The spectral flatness is thus 
a measure of noisiness as opposed to tonalness. However, as soon as only the magnitude 
at one individual bin equals 0, υχί will be zero as well. 

Table 3.10 shows the results for the spectral flatness for three prototype spectral shapes. 
The behavior of the spectral flatness at pauses in the input signal requires special consider-
ation as it is not defined for silence and will be comparably large for (low-level) noise. 
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Figure 3.14 Spectrogram (top), waveform (bottom background), and tonalness feature spectral 
flatness (bottom foreground) of a saxophone signal 

Figure 3.14 shows the spectral flatness for an example signal. It is low during tonal 
passages, high in noisy pauses, and produces spikes at transients. 

Common Variants 
It is common to use the power spectrum instead of the magnitude spectrum in order to 
emphasize peaks. 

To avoid problems with individual zero magnitudes having too large an impact on the 
overall result, the magnitude spectrum can be smoothed. One typical approach is to com-
pute the arithmetic mean of a group of neighboring spectral coefficients, which is basically 
the same as applying an MA filter to the magnitude spectrum. However, the length of the 
filter might also increase with frequency to take into account the lower frequency resolution 
of the human ear at higher frequencies. 

In many cases, more useful information can be gathered if the spectral flatness calcula-
tion takes only magnitudes within a pre-defined frequency range into account, as opposed 
to computing it from the whole spectrum. The MPEG-7 standard recommends a frequency 
range of from 250 Hz to 16 kHz, divided into 24 slightly overlapping frequency bands with 
quarter-octave bandwidth [33]. Since the spectral flatness is then computed for each indi-
vidual frequency band, the result per STFT is a vector of spectral flatness results. 

3.4.1.3 Tonal Power Ratio 

A straightforward way of computing the tonalness of a signal is to compute the ratio of the 
tonal power Ετ(η) to the overall power: 

Σ l*(M)l2 

i=0 

The interesting part in this case is naturally the estimation of the power of the tonal 
components. An approach to detecting tonal components in the spectrum is outlined in 
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Table 3.11 Tonal power ratio for the three prototypical spectral shapes silence (zero magnitude at 
all bins), flat (same amplitude at all bins), and peak (all bins except one have zero magnitude) 

Spectral Shape VTpr 

silence not def. 
flat mag. 0 
single peak (@ ks) 1 

-0.25 

Figure 3.15 Spectrogram (top), waveform (bottom background), and tonalness feature tonal power 
ratio (bottom foreground) of a saxophone signal 

Sect. 5.3.2.2. A simpler approximation to estimating the tonal energy is summing all bins 
k which 

■ are a local maximum: \X(k — l ,n ) | 2 < \X(k,n)\2 > \X(k + l ,n) | 2 and 

lie above a threshold GT-

The result of the tonal power ratio is a value between 0 < υτρτ < 1. Low results hint 
toward a flat (noisy) spectrum or a block with low input level while high results indicate a 
tonal spectrum. 

Table 3.11 shows the results for the tonal power ratio for three prototype spectral shapes. 
The behavior of the spectral flatness at pauses in the input signal requires special consider-
ation as it is not defined for silence and will be comparably large for (low-level) noise. 

Figure 3.15 shows the tonal power ratio for an example signal. It is zero in noisy pauses, 
high for tonal passages and, in the case of this simple saxophone signal, drops distinctively 
at the initial transients at note beginnings. 
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3.4.1.4 Maximum of Autocorrelation Function 

The ACF of a time signal yields local maxima where the ACF lag matches the wavelengths 
of the signal-inherent periodicities (see Sect. 2.2.6.2). The less periodic and therefore less 
tonal the signal is, the lower is the value of such maxima. The absolute value of the overall 
ACF maximum is therefore a simple estimate of the signal's tonalness: 

fTa(n) = max \νχχ(η,η)\. (3.49) 
0<ί?<Κ. — 1 

Values in the main lobe of the ACF around lag η = 0 have to be discarded to ensure more 
reliable results. Different approaches can be used to ignore the main lobe: 

■ Minimum lag: Assuming that a maximum of interest will not be found at high fre-
quencies (small lags and period lengths, respectively), the search for the maximum 
can be started at a pre-defined lag, ignoring values at smaller lags. The lower the 
expected maximum frequency is, the larger can the minimum lag can be. Depend-
ing on the task at hand and the sample rate, the maximum frequency might be too 
high to correspond to a reasonably large minimum lag. For example, at a sample rate 
of 48 kHz a frequency of 9.6 kHz corresponds to a lag of 5 samples, a frequency of 
4.8 kHz to a lag of 10 samples, and a frequency of 1920 Hz to a lag of 25 samples. 

■ Minimum magnitude threshold: Maxima are only detected at lags larger than the lag 
ητ. This lag is the smallest lag at which rxx crosses a pre-defined threshold Gr 

ητ = argmin {τχχ(ή) < Gr). (3.50) 
0<η<Κ.-\ 

Theoretically, however, the threshold might never be crossed; this case has to be con-
sidered in the implementation. 

■ Search range from the first local minimum: Only consider maxima at lags larger than 
the lag of the "first" local minimum. The idea is to avoid the detection of "insignifi-
cant" local maxima in the main lobe around lag η = 0, but depending on the signal, a 
local minimum might be detected at a very low lag. 

The best solution is to combine these approaches and possibly to find additional ways fitted 
to the problem to ensure meaningful results. 

The result is a value between 0 < ντΆ(η) < 1. This ACF-based feature will work 
more reliable for monophonic signals or signals with a limited number of fundamental 
frequencies. Low results indicate a non-periodic signal and high results a periodic signal. 
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Table 3.12 Tonalness feature acf maximum for the three prototypical signal types silence (zero 
magnitude at all samples), white noise and a sinusoidal signal 

Spectral Shape VTB. 

i 
v, 2 

0 
1». i""T 

silence 

white noise 

sinusoidal 

0 

0 

1 

10 15 20 25 

-0.25 

Figure 3.16 Spectrogram (top), waveform (bottom background), and tonalness feature ACF 
maximum (bottom foreground) of a saxophone signal 

Table 3.12 shows the results for the ACF maximum for three prototype signals. 
Figure 3.16 shows the ACF maximum for an example signal. As expected, there is 

the tendency of giving low values at noisy pause segments and higher values for tonal 
segments. 

3.4.1.5 Predictivity Ratio 

The predictivity ratio is a measure of how well the audio signal can be predicted by O-
order linear prediction (see Sect. 2.2.7). Each sample i is predicted using the preceding 
sample values and the prediction coefficients bj: 

o 

Σ^ -^-o· (3.51) 

j = l 

The less noisy the signal is, the smaller the error e P between the original and the predicted 
signal will be. Periodic and thus tonal signals will yield small prediction errors while noisy 
signals will result in high prediction errors. The power of the prediction error is therefore 
a measure of tonalness or more precisely a measure of noisiness as it will approach 0 for 
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Table 3.13 Tonalness feature predictivity ratio for the three prototypical signal types silence (zero 
magnitude at all samples), white noise, and a sinusoidal signal 

I 
*-. 2 

0 

0.3 

0.1 

3ΕΞ= 
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*VW***<wuJ 

Spectral Shape VTP 

silence not def. 

white noise high 

sinusoidal —> 0 
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"*wta\juJ 
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Figure 3.17 Spectrogram (top), waveform (bottom background), and tonalness feature predictivity 
ratio (bottom foreground) of a saxophone signal 

tonal signals: 

vTp(n) 

\ 

*.·(») 
Σ (x(i)-£(i)Y 

i(.(n) 

Σ -r2(k) 
i=is(n) 

(3.52) 

The result is a value larger or equal to 0. Low results indicate a periodic signal and high 
results a non-periodic signal. 

Table 3.13 shows the results for the predictivity ratio for three prototype signals. 
Figure 3.17 shows the predictivity ratio for an example signal with a predictor length of 

12 coefficients. It clearly separates the noisy pause segments (high values) from the tonal 
segments (low values); the individual tonal parts cannot be distinguished with the feature. 

3.4.1.6 Spectral Predictivity 

The spectral predictivity is a measure of tonalness computed from overlapping STFTs. The 
magnitude and phase of each spectral bin are predicted with a simple predictor with fixed 
coefficients: 

\X{k,n)\ = 2 - | A - ( M - l ) | - | X ( f c , n - 2 ) | , 

j>x(k,n) = 2·Φχ{^η-1)-Φχ{^η-2). 

(3.53) 

(3.54) 
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Figure 3.18 Spectrogram (top), waveform (bottom background), and tonalness feature spectral 
predictivity (bottom foreground) of a saxophone signal 

The prediction error exfP(fc, n) is then defined by 

|X(fc ,n) |e* x ( f e ' n ) - \X(k,n)\e*x(k,n) 
eTfp(fc,n) 

and the resulting tonalness 

«Tfp(n) 

\X(k,n)\-\X(k,n)\ 

K / 2 _ i 

c i + c 2 - Σ log(eTfp(fc,n)) 
fe=0 

(3.55) 

K/2 
(3.56) 

with c\ and c2 as constants to be arbitrarily selected (MPEG: cx = -0 .299 , C2 = -0 .43) . 
The spectral predictivity as shown in Fig. 3.18 is used in the psycho-acoustic model II 

of the audio coding standards by the Motion Picture Experts Group (MPEG) [65]. 

3.4.2 Autocorrelation Coefficients 

Infrequently, the first autocorrelation coefficients are used directly to describe statistical 
properties of the signal 

wACF(n) = Γ χ χ ( ϊ ? . ' ί ) with ϊ? = 1 ,2 ,3 , . (3.57) 

with νχχ{η, η) being the ACF as defined in Sect. 2.2.6.2. 
The number of used coefficients usually varies between 6 and 64 depending on require-

ments and sample rate. Each coefficient is in the range of - 1 < τχχ(η, n) < 1. The faster 
the coefficients decrease with increasing lag, the "whiter" the signal can be assumed to be. 

Table 3.14 shows typical results for the autocorrelation coefficient for three prototype 
signals. 

Figure 3.19 shows the autocorrelation coefficient at 77 = 20 for an example signal. The 
lower the input frequency and the more tonal the signal is, the higher the coefficient is. 
During the pauses, it drops toward 0. 



62 INSTANTANEOUS FEATURES 

Table 3.14 Autocorrelation coefficient for the three prototypical signal types silence (zero 
magnitude at all samples), white noise, and a sinusoidal signal 

3Γ 4 I 

0 ^ 

0.75 
» 0.5 
% 0.25 

0 
-0.25 

Input Signal «ACF 

silence not def. 

white noise « 0 

sinusoidal high 

10 15 20 

10 15 20 
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25 
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-0.25 
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25 

Figure 3.19 Spectrogram (top), waveform (bottom background), and autocorrelation coefficient 
20 (bottom foreground) of a saxophone signal 

3.4.3 Zero Crossing Rate 

The number of changes of sign in consecutive blocks of audio samples — the zero crossing 
rate — is a low-level feature that has been used for decades in speech and audio analysis 
due to its simple calculation: 

vzc(n) 
1 

2-K. Σ c(i)] - s i g n [ x ( i - 1)] (3.58) 

with the sign function being defined by 

sign [x(k)\ = < 

1, ifx{i)>0 

0, ifx(i) = 0 

- 1 , i f x ( ' i ) < 0 

(3.59) 

and x(i — 1) = 0 used as initialization if x(i — 1) does not exist. 
The output will be a value in the range of 0 < «zc(^) < 1· The more often the signal 

changes its sign, the more high-frequency content can be assumed to be in the signal. 
Furthermore, the more the zero crossing rate varies over blocks, the less periodic the signal 
can be assumed to be. The concept of the zero crossing rate is based on input signals with 
an arithmetic mean of approximately 0. 
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Table 3.15 Zero crossing rate for the three prototypical signal types silence (zero magnitude at all 
samples), white noise, and a sinusoidal signal 

Input Signal t>zc 

silence 0 

white noise high 

sinusoidal period lengths per block times 2 

0.25 

Figure 3.20 Spectrogram (top), waveform (bottom background), and zero crossing rate (bottom 
foreground) of a saxophone signal 

Table 3.15 shows the results for the zero crossing rate for three prototype signals. 
Figure 3.20 shows the zero crossing rate for an example signal. Unsurprisingly, it is high 

for noisy parts and low for tonal parts. Its usability for fundamental frequency detection 
(see Sect. 5.3.3.1) is indicated by the long constant values during constant pitches. 

3.4.3.1 Common Variants 

The zero crossing rate has been used for both measuring the tonalness of a signal as in-
troduced in Sect. 3.4.1 and estimating its fundamental frequency by assuming a sinusoidal 
input signal and then relating the number of zero crossings directly to the fundamental 
frequency. To improve the robustness of such attempts, the input signal can be low-pass 
filtered to suppress high-frequency content interaction with the feature result. The cut-
off frequency of the low-pass filter then should be chosen as low as the highest expected 
fundamental frequency to ensure maximum suppression of high-frequency content. 

3.5 Feature Post-Processing 

The result of the feature extraction process is a series of feature values that can — depen-
dent on the use case — be processed, transformed, and selected. 
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It is quite common to compute a large number of features. Formally, they can be repre-
sented in a matrix: 

v(Q) v(l) . . . ν(λί -

"" v0{0) v0(l) 

t>i(0) ÜI(1) 

Ü ^ - I ( O ) vjr-i(l) 

« o ( ^ - l ) ' 
«!(ΛΓ-1) 

^ _ ι ( Λ ^ - 1 ) . 

(3.60) 

with the number of rows being the number of features T and the number of columns being 
the number of blocks ΛΛ Each vector v(n) consists of J7 feature values at block n and is 
called an observation. 

3.5.1 Derived Features 

It is possible to generate new features from the previously extracted features. These new 
derived features do not have to replace the original features; they can be added as comple-
mentary features. Sometimes these derived features are called subfeatures, but we will use 
the term subfeature in a slightly different context as described in Sect. 3.5.3. 

In some cases the detection of (sudden) changes of feature values is of special interest as 
it may mark the start or end of important segments, for example, note onsets and structural 
boundaries. A simple way of analyzing these changes is to compute the difference be-
tween consecutive feature results (which would be called derivative if it were a continuous 
function): 

1). (3.61) VJ,A(TI) = Vj{n) - Vj(n 

The resulting series u , ^ {n) is either one value shorter than the corresponding series Vj (n) 
or an appropriate initialization for Vj(—1) has to be defined. The time stamp ts<^(n) of 
VJ,A(TI) would be 

ts(n) + ts{n - 1) 
ta,A(n) = 9 O-OZ) 

with ts{n) being the time stamp of Vj(n). 
Computing the derivative has the character of a high-pass filter; it is also common to do 

the opposite, namely to smooth out Vi(n) with a low-pass filter. This allows us to focus 
on the long-term variations of the feature. In general it is beneficial if the used filter has a 
zero phase or linear phase response in order to ensure correct timing properties, therefore 
either an MA filter as introduced in Sect. 2.2.1.1 can be used or any IIR filter applied twice 
forward and backward on the series to produce the low-pass filtered series Vj^p(n) (see 
Sect. 2.2.1.2). 

The features usually are the input of the second processing step of an ACA system, 
namely a classification system, a distance measure, or some other system for feature in-
terpretation. Depending on the classifier and feature selection algorithm used and given 
a training database (compared to the number of features), it may be of interest to have as 
many raw input features as possible or at least to have a large feature data set from which 
to choose. While linear combinations of features are frequently already covered by the 
selection algorithm (see below), non-linear combinations such as the multiplication of two 
series of features can theoretically improve results in certain cases. An example would be 

Vji(n) = Vj(n) -vi(n). (3.63) 
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The usage of such derived features is frequently met with only limited success as most of 
the information of interest can already be found in the original features. 

3.5.2 Normalization and Mapping 

When different features are combined into vectors v(n), their different output ranges and 
distributions might become a problem. This is, for example, the case when computing the 
Euclidean distance because one feature may have more impact on the result than another. 
Consider two identical features with identical distribution except for an amplitude scale 
factor λ. Each observation contains the two features. When computing the Euclidean 
distance, the second dimension's distance will have the weight λ2 while the first dimension 
will be weighted with 1. Large λ will thus let the second feature dominate the distance 
while small λ will render the second dimension superfluous. 

A common approach to normalize features if they all have symmetric distributions with 
identical shape is to remove their mean value and scale them to a variance of 1 (see, e.g., 
[66]): 

Vj{n)-ßVj vj,N{n) = - . (3.64) 

However, if the distributions do not have identical shape this normalization is not appli-
cable. In that case, other approaches are necessary to ensure a correct combination of 
features. 

3.5.2.1 Feature Distribution 

To get similar feature distributions, a target distribution has to be chosen to which all the 
features will be transformed if necessary. In most cases, a Gaussian distribution is chosen 
as target. 

Several approaches exist to transform a given distribution into a Gaussian distribution; 
widely used is the Box-Cox transform [67]. One example of this transform is 

υ(λ) ί ^ λ ^ Ο 
\logO;), λ = 0 

with the parameter λ to be estimated. The Box-Cox transform only considers a limited 
class of transformation functions and thus does not guarantee that any arbitrary distribution 
can be mapped to a Gaussian distribution. 

There are also numerical methods of finding appropriate feature transformations. One 
example is the work of Albada and Robinson who transform arbitrary distributions to the 
normal distribution [68]. The transformation function for every feature has then to be stored 
numerically. 

In many practical applications it is sufficient to transform selected features in a way that 
results only in roughly approximated Gaussian distributions. Only features failing a test for 
Gaussianity have to be subjected to a transformation. Statistical procedures to test a distri-
bution for Gaussianity are, for example, the Kolmogorov-Smirnov test, the Lilliefors test, 
the Shapiro-Wilk test [69], and the Anderson-Darling test [70]. Thode gives a good intro-
ductory overview [71]. Unfortunately, the result of these statistical tests is only of limited 
use in ACA because these tests nearly always tend to fail for large numbers of observa-
tions. In these cases it is more practical to compute both the skewness (see Sect. 3.2.7) 
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and possibly the kurtosis (see Sect. 3.2.8) of the features to determine how Gaussian their 
distribution is. As a rule of thumb, distributions with a skewness smaller than 2 are not 
significantly skewed and can thus be assumed to be symmetric [72]. 

3.5.2.2 Feature Normalization 

The standard approach to feature normalization has been given in Eq. (3.64). When the 
feature distribution is not shaped like a Gaussian distribution, it can make more sense to 
normalize it with respect to its median Q„(0.5) as described in Eq. (3.25). The normalized 
feature is then 

vj{n)-Qv.(0.5) 
Vj,n{n) = ; - (3.66) 

with ,s„ being the root mean squared deviation from the median 

A ' - l 

^ E (".,(«)-ft, (0.5))2. (3.67) 

The normalization of multi-dimensional features requires special consideration and de-
pends on both the feature characteristics as well as the specific use case. 

3.5.3 Subfeatures 

Each feature still represents a time series, and it is common to compute a time-independent 
summary of each feature per sliding texture window (the term texture window has been 
introduced in Sect. 2.2.2). The summary feature is frequently called subfeature. The most 
common subfeatures would be the arithmetic mean and the standard deviation of the feature 
or, more general, basically every statistical measure presented in Sect. 2.1.4. Furthermore, 
it is basically possible to use each single feature presented above as a description of the 
feature time series by computing the feature of a feature, although certainly not every com-
bination would make sense. A relatively large number of possible meaningful subfeatures 
in the context of musical genre classification was presented by Mörchen et al. [73]. 

3.5.4 Feature Dimensionality Reduction 

Although large numbers of features can easily be extracted from the audio data, it is unclear 
a priori which features will help the final interpretation or classification stage of an ACA 
system. In other words, it is not known which features are of relevance. 

The accuracy of a pattern recognition system or classifier will not necessarily improve 
with an increasing number of features. A large number of features increases the likelihood 
of overfitting to occur during the training. Overfitting means that the classifier starts to 
learn training set specific characteristics which cannot be generalized to the use case. The 
classifier will perform poorly on unknown input data. Therefore, the number of features has 
to be reduced and fitted to the amount of available training data.3 The optimal number of 
features is difficult to determine; typically it is simply the number of features that maximize 

-'There exist classifiers which are relatively robust against such dimensionality issues while other classifiers are 
where susceptible. The danger of overfitting should be carefully considered for each combination of classifier 
type, the number of features, and the size of the training data set. 

\ 
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the classification accuracy of the training set using N-fold cross validation (see Sect. 8.1.3). 
To estimate the minimum feature performance, it is helpful to add an additional feature 
consisting of random noise to the feature set. 

We can define the following criteria for a feature to be helpful: 

■ high "discriminative " or descriptive power since the feature should be suitable to the 
task at hand, 

■ non-correlation to other features because each feature should add new information to 
avoid redundancy, 

• invariance to irrelevancies to allow the feature to be robust against, e.g., linear trans-
formations of the input audio signal such as scaling and filtering operations (low-pass 
filtering, reverberation), the addition of signals such as (background) noise, coding 
artifacts as well as the application of non-linear operations such as distortion and 
clipping (see Wegener et al. for an example evaluation of feature robustness [74]), 
and 

■ reasonable computational complexity to ensure that the feature is able to be computed 
on the target platform (such as a mobile device) and for the required application, 
respectively. 

We will mainly focus on the first two criteria; the third criterion can be easily tested by 
adding modified audio files to the test set, and the fourth criterion is too application-specific 
to be dealt with in a general way. 

There are two different approaches to reduce the dimensionality of the feature space: 

■ feature subset selection to discard specific features, and 

■ feature space transformation to transform the features to a lower dimensional space. 

In the first case the most promising feature subset is chosen; in the latter case only those 
dimensions in the transformed feature space are discarded that contribute the least infor-
mation for the target application. 

Note that the requirement of feature dimensionality reduction strongly depends on the 
classification algorithm used; furthermore, it is still under discussion whether complex 
methods of dimensionality reduction really outperform simpler ones [75]. 

3.5.4.1 Feature Subset Selection 

The aim of feature subset selection is to reduce the number of used features by discarding 
the least powerful features. Formally, the available feature set 

V = ÜJ|J=I,...,.F (3-68) 

should be reduced to the feature subset 

νβ = ι ^ = 1 , . . . Λ (3.69) 

with Fs < T; the subset is chosen to optimize a given objective function J(VS). 
Feature selection algorithms are called wrapper methods if the objective function is the 

classifier itself ana filter methods if the objective function J(VS) is independent of the clas-
sification system used. Filter methods select features based on properties a good feature set 
is presumed to have and are usually computationally less expensive than wrapper methods. 

This section will only provide a short introduction to the most common approaches to 
feature subset selection. More in-depth surveys of this topic have been published by Guyon 
and Elisseeff [76] and Cantu-Paz et al. [77]. 
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Examples for wrapper methods are 

■ Brute Force Subset Selection 

The most obvious way of finding the optimal feature subset is to compute the classifi-
cation accuracy for all possible combinations of features and to select the subset that 
performed best. The disadvantage of this approach is that the number of subsets to 
test, i.e., to train and evaluate, will be 2·*". This renders this method impractical for 
large numbers of features J-". 

■ Single Variable Classification 

A simple feature ranking can be obtained by calculating the classification accuracy 
for each individual feature. This enables the identification of features performing 
very poorly individually. While discarding the features that perform worst seems to 
be an intuitive solution, there are two problems with selecting or discarding features 
this way: 

1. The feature ranking contains no information on the correlation of two or more 
features. Consider the case of two features with identical values. They will both 
have the same ranking which is possibly high, but leaving both in the selected 
feature subset cannot improve classifier performance (and might even harm it in 
the case of simple classification algorithms). 

2. The feature ranking contains no information on the combined usefulness of fea-
tures. A feature that adds no information individually might be able to add infor-
mation in combination with other features. 

■ Sequential Forward Selection 

Sequential forward selection starts with an empty subset of features. In the first itera-
tion, it considers all feature subsets with only one feature similar to the single variable 
classification approach method. The subset with the highest classification accuracy is 
used as the basis for the next iteration. The iterative algorithm can be structured into 
the following processing steps: 

1. Start with an empty feature subset Vs = 0. 

2. Find the one feature Vj not yet included in the feature subset that maximizes the 
objective function 

Vj = argmax J( Vs I ) Vj). (3.70) 

3. Add feature Vj to Vs. 

4. Go to step 2 and repeat the procedure until the required number of features has 
been selected or the required classification accuracy has been reached. 

■ Sequential Backward Elimination 

Sequential backward elimination works in an analogous way to sequential forward 
selection but starts with a full subset of features and iteratively removes features from 
the subset. It is computationally less efficient than sequential forward selection. This 
is particularly true for large feature sets. Sequential backward elimination can be 
argued to give better results since sequential forward selection does not assess the 
importance of features in combination with other not yet included features. 
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There exist many filter methods for finding variable rankings. The methods include, for 
example, chi-square statistics or any arbitrary class separability measure. One common 
example of a filter yielding an implicit feature ranking is Principal Component Analysis 
(PCA). The concepts of PCA are summarized in Appendix C. It can be used for feature 
selection by examination of the transformation matrix T. The idea is to keep the features 
with major influence on the principal components and to eliminate features with major 
influence on the components with low variance. 

A simple rule for feature elimination is to start with the component with the smallest 
eigenvector, discard the feature which contributes most to this component, proceed to the 
next-smallest eigenvector, and repeat the procedure until all features have been ranked. 
Then, an arbitrary number of features can be discarded. 

3.5.4.2 Feature Space Transformation 

The objective of feature space transformation is to reduce the number of used features by 
transforming them into a lower dimensional space. 

The disadvantage of using transformations for dimensionality reduction is that the trans-
formed features cannot be interpreted as easily as the original features since the trans-
formed features are linear combinations of the original features. Examples of tools for 
feature space transformation are 

■ Principal Component Analysis 

Transforming the data set with PCA (see Appendix C) does not reduce the dimen-
sionality of the data by itself. However, the new dimensions can be sorted according 
to the variance they contribute to the data which can be seen as a measure of impor-
tance. Discarding the components that account for low variance is therefore a viable 
approach. 

A widely used systematic criterion to decide how many components can be discarded 
is based on the eigenvalue. This approach is based on the assumption that every com-
ponent with an eigenvalue lower than 1 can be discarded. This criterion is equivalent 
of a threshold of XJT for the relative variance for which a component accounts. 

In many cases, this criterion leaves more components in the data set than useful. A 
slightly more "hands-down" approach is to identify either the index after which the 
eigenvalues are significantly lower or the index after which eigenvalues tend to be 
very similar to each other. 

■ Other Transformation Methods 

Other transformation methods can be used for feature space transformation but will 
not be explained in detail in this book. Typical approaches that can be found in the 
literature are Independent Component Analysis (ICA) and Singular Value Decompo-
sition (SVDj. Linear Discriminant Analysis (LDA) also transforms the feature space, 
however, the number of output components cannot be chosen freely in this case. The 
main distinction of LDA and PCA is that PCA maximizes the variance and LDA 
maximizes class separability. 



CHAPTER 4 

INTENSITY 

Intensity, magnitude, and loudness-related features constitute one of the most commonly 
used classes for the description of audio content. Most audio editors and digital audio 
workstations illustrate the audio signal in its waveform view, its amplitude variation over 
time. There also exists a variety of instruments for level, volume, and loudness measure-
ments frequently used in recording studio environments. 

Many of the presented features are instantaneous features similar to the features in-
troduced in Chap. 3. Therefore the same post-processing options (see Sect. 3.5) can be 
applied to most of the features introduced in the following. 

4.1 Human Perception of Intensity and Loudness 

It is important to distinguish the meaning of the terms intensity and loudness. Intensity 
means a physical, measurable entity such as the magnitude of a sound while loudness 
refers to a perceptual entity that can only be measured via responses of human observers 
[78]. Unfortunately, the term loudness is also used for algorithmic models of the perceived 
loudness. 

Human perception of intensity is related to the magnitude of the audio signal in a way 
that if the signal's magnitude is scaled up, the perceived loudness will increase as well. It 
has been discovered very early that this relationship is non-linear; a linear increase in the 
signal's magnitude or power will not result in a linear increase in perceived loudness. An 
approximately linear relation could be found by using the pseudo-unit decibel (dB) which 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 71 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 
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Figure 4.1 Level error introduced by adding a small constant e to the argument of a logarithm 

is computed by taking the logarithm of the intensity feature v(n) (computed from a block 
of samples, see below): 

v<m(n) = 20-log 10 (4.1) 

with vo representing a reference constant. In the digital domain, dealing with audio ampli-
tudes in the range of [—1; 1], it is commonly set to vo = 1. The resulting level unit is then 
referred to as dBFS (dB full scale) and has a range of — oc < ΊΜΒ(?Ι) < OdB. The scaling 
factor 20 has been chosen to scale the non-linear function so that 1 dB roughly represents 
the level difference a human can easily recognize. This is only a rough approximation as 
the actual so-called Just Noticeable Difference in Level (JNDL) depends on the stimulus 
level and partly on stimulus frequency and masking effects [47]. 

Computing the logarithm of the feature v is not possible for silence v(n) = 0. The 
calculation of log(0) is commonly avoided by adding a small constant c, resulting in 

Vdn(n) = 20 · log10(?;(n) + e). (4.2) 

The choice of e determines the measurement accuracy at low-level inputs. The measure-
ment error increases for decreasing v(n) approaching e. It will be 6dB for v(n) = e 
and increase with lower levels. Figure 4.1 visualizes the error amount for different e. 
Alternatively, the input feature values may be truncated at e to yield a correct value for 
magnitudes greater or equal than c at the cost of an additional i f statement per feature 
value: 

v(n), if v(n) > e 

e. otherwise 
vtmnc\n) (4.3) 

The decibel scale is not a loudness scale since equal-sized steps on the decibel scale are not 
perceived as equal-sized loudness steps by human listeners: doubling the level in dB does 
not result in doubling the perceived loudness of a sound. Stevens, summarizing several 
loudness perception studies, proposed a simple rule of thumb stating that a doubling of the 
perceived loudness corresponds to a level increase of 10 dB [79]. 

More accurate models of the human perception of loudness take both the input signal's 
frequency and the cochlea's frequency resolution into account as has been shown by many 
researchers during the last century. The most important researchers in the history of loud-
ness perception are probably Fletcher and Munson [80, 81], Stevens [78, 79, 82], Moore 
[83], and Zwicker and Fasti [47]. 
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4.2 Representation of Dynamics in Music 

In a traditional musical score, loudness-related performance instructions are rather vague. 
Usually only five to eight different dynamic steps are used to describe musical dynamics 
(e.g.,pp: pianissimo, p: piano, mf: mezzo forte, f: forte, ff: fortissimo for the dynamic 
range from "very soft" to "very strong"), complemented by indications of smooth loud-
ness transitions (e.g., crescendo or decrescendo for increasing and decreasing loudness, 
respectively) and dynamic accents (e.g., sf: sforzando). These written instructions do not 
directly refer to absolute loudness as it would also depend on a number of other influenc-
ing factors such as instrumentation, timbre, number of voices, performance, and musical 
tension and musical context. The indifference to absolute loudness may also be illustrated 
by the fact that while listening to a recording on a hi-fi system, the reproduction volume 
may be manipulated without loosing the piano or forte character of the performance. Still, 
Nakamura has shown that measures of intensity or loudness can to a certain degree be used 
as indications of musical dynamics [84]. A loudness-related performance attribute is the 
tremolo, the periodic modulation of loudness over time. It usually appears in combination 
with a vibrato. 

A more technical representation of dynamics in music is the velocity as standardized 
in the MIDI protocol [3]. It consists of 128 volume steps with the highest representing 
maximal intensity. But although the number of velocity steps is standardized, there is no 
standardized relationship between MIDI velocity and intensity: Goebl and Bresin found 
that for the Yamaha Disklavier and the Bösendorfer SE System (both pianos allowing for 
the monitoring of performance data), the relationship between MIDI velocity and (loga-
rithmic) sound pressure level is nearly linear when disregarding very low and high values 
[85]. Dannenberg investigated the RMS peak level of various synthesizers and software 
instruments and found great differences among different synthesizers [86]. He identified 
a general trend for the velocity to be related to the square root of the RMS peak instead 
of its logarithm. Using one single electronic instrument, Taguti measured the A-weighted 
sound pressure level dependent on velocity and key [87]. The results, displayed over var-
ious keys for different input velocities, showed non-systematic deviations of up to 10 dB 
from a constant level among keys. 

4.3 Features 

The features presented in this section can be roughly structured into three categories: phys-
ical measures of sound intensity, approaches to measure intensity in recording studio envi-
ronments, and psycho-acoustically motivated features modeling the human perception of 
loudness. 

4.3.1 Root Mean Square 

The RMS is one of the most common intensity features and is sometimes directly referred 
to as the sound intensity. It is calculated from a block of audio samples by 

i=is(n 

VRMs(n) 

\ 
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Table 4.1 RMS for the three prototypical signal types silence (zero magnitude at all samples), 
white noise with a rectangular PDF and a peak amplitude A, and a sinusoidal signal with the same 
peak amplitude 

Input Signal WRMS 

silence 0 

rect. white noise (ampl. A) Α/^ϊ 

sinusoidal (ampl. A) A/V2 

0 5 10 15 20 25 
i[B]-> 

Figure 4.2 Spectrogram (top), waveform (bottom background), and RMS (bottom foreground) of 
a saxophone signal 

Typical block lengths for the RMS calculation are in the range of several hundred millisec-
onds. The length in seconds is the so-called integration time. 

The result of the calculation is a value within the range 0 < V R M S ( " ) — 1 ( a s ' o n g a s 

the amplitude 1 represents full scale. It will equal 0 if the input is silence and will approach 
1 for both a square wave with maximum amplitude and a constant DC offset at ± 1 . Sharp 
transients in the signal will be smoothed out by an RMS measure due to the comparably 
long integration time. Table 4.1 shows the RMS results for three signal prototypes. 

Figure 4.2 shows the RMS of an example signal for two implementations, one calcu-
lated as shown above and the other with an approximation explained below. The RMS is 
a measure of the power of the signal; the two implementations shown are roughly equiva-
lent except during sudden signal pauses in which the low-pass filtered variant only slowly 
decreases. 

4.3.1.1 Common Variants 

The calculation of the RMS can be computationally inefficient for large block lengths and 
small hop sizes %. If the hop size is one sample, it is possible to reduce the number of 
computations by using the method of recursive implementation introduced in the context 
of the MA filter in Sect. 2.2.1.1: 
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Figure 4.3 Flowchart of the frequency-weighted RMS calculation 
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Figure 4.4 Frequency weighting transfer functions applied before RMS measurement 

-̂ RMS (n) 
x(ie{n))2 -x(ia(n- l))2 

ie(n) - ia(n) + 1 

"RMs(ii) = \ A R M S W · 

V R M S ^ - 1 ) ' (4.5) 

(4.6) 

This implementation is computationally efficient but still requires a significant amount of 
memory to be allocated for large block lengths. An approximation of the RMS ^R M S with 
hop size Ή = I can be implemented with a single-pole filter (compare Sect. 2.2.1.1): 

^tmp(i) = a ■ vtmp{i - 1) + (1 - a) ■ x{if 

"RMS(«) = yVtmp{i). 

(4.7) 

(4.8) 

The filter coefficient a can be estimated from the integration time (or block length) with 
Eq. (2.29). 

The RMS computation is often preceded by a weighting filter. Figure 4.3 shows typical 
transfer functions for such weighting filters. The transfer function of a weighting filter 
is usually modeled after an inverse equal-loudness contour which measures the level for 
which a listener perceives equal loudness at different frequencies [80]. Thus, the weighting 
filter amplifies frequency regions in which the human ear is sensitive and attenuates other 
regions. 

The specific weighting filter transfer functions shown in Fig. 4.4 are: 

■ A weighting: weighting function to be used for sounds at low level [88], 

■ C weighting: weighting function to be used for sounds at medium level [88], 
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■ Z weighting: flat frequency weighting function (no weighting) [88], 

■ RLB weighting: weighting function according to ITU-R BS.1770 (plus high-frequency 
emphasis for multichannel signals) [89], and 

■ CCIR weighting: weighting function according to ITU-R BS.468 [90]. 

When frequency weighted RMS measures are used as models of loudness, the integration 
time is usually several seconds in order to ignore short-term variations of the signal. 

4.3.2 Peak Envelope 

The peak envelope of an audio signal can be extracted in different ways. The simplest way 
of extracting the envelope is to find the absolute maximum per block of audio samples: 

«Peak(n) = max \x(i) 
is(n)<i<ie(n) 

(4.9) 

Using a so-called Peak Program Meter (PPM), the envelope is extracted on a sample-per-
sample basis. The PPM, frequently used in recording studio environments, operates with 
different integration times for attack {attack time) and release (release time). Typically, the 
attack time is significantly shorter than the release time (e.g., attack time: 10 ms, release 
time: 1500 ms) which means that the output reflects an increase in level faster than a de-
crease. This originates in requirements of recording engineers: the attack time has to be 
short in order to allow the systems to detect short peaks while the longer release time gives 
humans more time to actually see those peaks. 

The structure of a digital PPM as described by Zölzer is shown in Fig. 4.5 [91]. The 
filter coefficient representing the attack time is named «AT- The release time coefficient 
O:RT is not always in use and is being represented by λ in the figure. More specifically, λ 
has the following two states depending on the input magnitude 

λ = 
aR T, if \x(i)\ < vPPM{i - 1) 
0, otherwise 

(4.10) 
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Figure 4.5 Flowchart of a Peak program meter 
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Figure 4.6 Spectrogram (top), waveform (bottom background), and PPM output compared to the 
magnitude maximum per block (bottom foreground) of a saxophone signal 

The two states may be referred to as release state and attack state. The corresponding 
output equations are 

Release state: 

«PPM(I) = vpPM{i - 1) - «RT · νΡΡΜ(ί - 1) 

= (1 - apcr) -vppM(i - 1), (4.11) 

Attack state: 

vppM(i) C*AT · {\x(i)\ - vPPM(i - 1)) + vPPM(i - 1) 

"AT · |z(i)| + (1 - αΑτ) · vpPM(i - !)■ (4.12) 

The result of both «peak and ^PPM is a value within the range 0 < ^PPM < 1. It will equal 
0 if the input is silence and approach 1 for certain full-scale signals. 

Figure 4.6 shows the results of both envelope measures. The comparison with the two 
RMS results as shown in Fig. 4.2 reveals similar behavior of RMS and peak measures 
as the calculation is relatively similar. The dotted peak maximum shows faster and more 
pronounced changes as can be clearly seen during the pauses with the PPM's constant 
decrease due to the long release time. 

4.3.3 Psycho-Acoustic Loudness Features 

There exist complex loudness measurements based on either psycho-acoustic properties of 
human loudness perception or physiological models of the human ear (or both). These are 
not frequently used for ACA, as (a) they are comparably costly to implement and to com-
pute and (b) there are indications that they are in many cases equally meaningful as simpler 
loudness approximations such as the algorithm described in International Telecommunica-
tion Union (ITU) recommendation BS.1770, a weighted RMS solution [92]. 
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Figure 4.7 Flowchart of Zwicker's model for loudness computation 

A widely known and psycho-acoustically motivated loudness measurement has been 
proposed by Zwicker [47, 93]. Figure 4.7 presents the flowchart of this loudness calcu-
lation. The signal is transformed into the bark domain (see Sect. 5.1) by a filterbank or 
a similar frequency transform. The so-called excitation patterns are computed from the 
filterbank outputs by taking into account frequency sensitivity and masking effects. Then, 
the specific loudness is calculated from the excitation patterns per band. The resulting 
loudness is the sum of the specific loudness over all bands. 

4.3.3.1 EBUR128 

One relatively recent recommendation for measurement of the loudness of a program or 
a file has been published by the European Broadcasting Union (EBU) [94], The loudness 
itself is measured in compliance to ITU recommendation BS.1770, an RMS measure with 
an RLB weighting. The required block length is 3.0 s with a block overlap ratio of at least 
66%. Blocks with very low loudness are discarded with a gating threshold. 

The EBU recommendation also requires the following additional values to be extracted 
from the audio signal: 

■ clipped values according to an up-sampled true peak meter, and 

■ the loudness range computed from a histogram of all loudness block results as the 
difference Qv(0.95) - Q,,(0.10). 



CHAPTER 5 

TONAL ANALYSIS 

Tonal aspects play an important role in understanding and analyzing music, as can be seen 
from the vast number of pitch-related publications in music theory. Pitches are the basic 
building blocks of key, melody, and harmony of a piece of music. 

5.1 Human Perception of Pitch 

The human perception of pitch is directly related to the frequency of a signal in a way that 
higher frequencies will lead to the perception of a higher pitch. If the signal is a combina-
tion of sinusoidal components with the frequencies /o, 2/0 , 3 /o , . . . (which is a reasonable 
approximation for tonal sounds produced by many musical instruments), then the. funda-
mental frequency f0 dominates the pitch perception. As a matter of fact, humans will 
usually even perceive the same pitch for this combination of harmonics if the fundamental 
frequency /o has low power or is missing. 

5.1.1 Pitch Scales 

The relation between the fundamental frequency and the perceived pitch is non-linear; at 
higher frequencies, two pitches with the same perceived pitch distance will have a larger 
frequency distance than at lower frequencies. Simply speaking, the non-linearity is tied 
to the frequency resolution of the human cochlea. There are different approaches to mea-
sure this cochlear frequency map and thus there exist different ways of describing it. The 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 79 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 
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Figure 5.1 Different models for the non-linear mapping of frequency to mel (left) and bark (right) 

most common models are the mel scale and the critical band rate, also called bark scale 
(Fig. 5.1). There has been a number of proposals for analytical functions to approximate 
the measurement data resulting from listening test for these scales. In most practical audio 
analysis applications, the use of one or another approximation is apparently circumstantial 
(compare [95, 96]). Nevertheless, several of these approximations will be presented below 
to illustrate the number of options. 

5.1.1.1 Mel Scale 

The term mel was introduced in 1937 by Stevens et al. as the name of a subjective pitch 
unit [82]. The mel scale is a measure of tone height. The empirical data used to build 
the numerous analytical models of the mel scale stems from only a limited number of 
psychological experiments: the most important test results have been presented by Stevens 
et al. [82], Stevens and Volkmann [97], and Siegel [98]. Three models will be presented 
here; the two older models by Fant [99] 

m F ( / ) = 1000-log2 1 + / 
1000 Hz 

and O'Shaughnessy [100] 

m s ( / ) = 2595-log10 1 + / 
700 Hz 

(5.1) 

(5.2) 

are most commonly used. Note that the latter model is sometimes also referenced in the 
form 

m s ( / ) = 1127· log (l + ^JL-). (5.3) 
700 Hz J 

The third model proposed by Umesh et al. [101] appears in this list mainly to demonstrate 
the variety of models and is not as widely known as the two other models: 

/ 
mu(/) (5.4) 2.4 · l O - 4 / + 0.741' 

5.1.1.2 Bark Scale 

The bark scale or critical band rate is constructed from the bandwidth of measured fre-
quency groups, the critical bands. Zwicker and Fasti suggest that the bark scale is related 
to the mel scale by 1 bark =100 mel [47]. 
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The most prominent models of the bark scale have been proposed by Schroeder et al. 
[102] 

3s(/) = 7 . a r c s i n h ( ^ s - ) , (5.5) 

Terhardt [103] 

3 T ( / ) = 13.3 ■ arctan ( 0.75 ■ ^ ^ ) , (5.6) 

and Zwicker and Terhardt [104] 

3z(/) = 13 · arctan (θ.76 · ^ - ) + 3.5 · arctan ( ^ - ) . (5.7) 

Traunmüller's model [105] is not as well known but is simple to calculate 

26 81 
3 ™ ( / ) = T T T ^ - 0 . 5 3 . (5-8) 

5.1.1.3 Other Models 

Many more models have been proposed over the years for the non-linear transformation of 
frequency to perceptual frequency groups, pitch height, and position on the human cochlea. 

Moore's model for the Equivalent Rectangular Bandwidth (ERB) can be seen as a model 
"competing" to the critical band rate [83] 

, ( / ) = 9.26 log ( l + ^ y . (5.9) 

Terhardt introduced a function, which he named SPINC, as an alternative to the mel scale 
[106]: 

S ( / ) = 1414 arctan ( y ^ ) , (5-10) 

and Greenwood proposed the following equation to compute the position (normed to the 
range of [0; 1]) of a specific frequency on the cochlea [107]: 

^ = 2 l 1 0 g - ( T o f c + 1) · ( 5 · Π ) 

5.1.2 Chroma Perception 

There is an additional facet to human pitch perception: not only do we perceive pitch 
height from low to high but we tend to group pitches with specific frequency ratios [108, 
109]. More specifically, humans perceive frequencies with a frequency ratio of a power 
of 2 (such as f0, 2f0,4f0,8/0,...) as very similar and closely related to each other. This 
phenomenon is usually called chroma perception. 

Figure 5.2 visualizes this in a helix plot. On the one hand, the frequency is monotoni-
cally increasing on the z axis, modeling the tone or pitch height. On the other hand, points 
with the same (x, y) coordinates share a frequency ratio of a power of 2 — they share the 
same scale degree and are in the same pitch class (see Sect. 5.2.1), respectively. The circle 
which appears when looking directly on the (x, y) plane would thus encompass all pitch 
classes. 
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Figure 5.2 Helix visualizing the two facets of pitch perception: pitch height and chroma 

5.2 Representation of Pitch in Music 

Much can be said about pitch-related properties of music, covering not only the frequency 
mapping of specific pitches but also interaction of pitches in chords and melodies, harmony 
progression, and musical key. It is not the intention of this section to give a comprehensive 
overview on the (music) theory involved; instead, some basics will be covered in a simpli-
fied manner since the understanding of some theoretical background can be of help in the 
successful design of analysis algorithms. 

5.2.1 Pitch Classes and Names 

The concept of musical pitch in western music theory closely follows the pitch helix (see 
Fig. 5.2) in that each octave, i.e., each range with boundaries with a frequency ratio of 
2 : 1, is divided into the same chunks: the 12 pitch classes. 

The common labels of these octave-independent pitch classes are shown in Table 5.1. 

Table 5.1 Pitch class indices and corresponding names of the chromatic pitch classes 

0 1 2 3 4 5 6 7 8 9 10 11 

C Ctt/Db D OljE\> E F FJ/G\> G GJJÄO A A^/Bb B~~ 

Seven of those pitch classes form the so-called diatonic scale. 
Table 5.2 shows a diatonic scale, more specifically the major mode (see Sect. 5.2.3) 

based on a root note C with pitch class index, pitch class name, Solfege name and distance 
to the previous pitch class in semi-tones. 

As can be seen from the table, the distance between two neighboring pitches is in most 
cases two semi-tones; twice, however, it is only one semi-tone. Any pitch between the pre-
sented diatonic pitches can be constructed be raising the pitch (e.g., C -» Cjj) or lowering 
it (e.g., E —> E\>). For now it will be assumed that, e.g., Cjl equals D\> (a relation that is 
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Table 5.2 Names and distance in semi-tones AST of diatonic pitch classes 

Index Name Solßge Name AST 

0 

2 

4 

5 

7 

9 

11 

C 

D 

E 

F 

G 

A 

B 

Do 

Re 

Mi 

Fa 

Sol 

La 

Si 

Figure 5.3 One octave on a piano keyboard with annotated pitch class names 

referred to as enharmonic equivalence), resulting in 12 pitch classes per octave as shown 
in Table 5.1. 

Figure 5.3 depicts these pitch classes on a piano keyboard; the white keys form the 
mode C Major mode as shown in Table 5.2. Figure 5.4 displays the pitch classes in one 
octave in musical score notation. 

A common convention for naming musical pitches used in the following is simply the 
pitch class name followed by an octave index, e.g., C2 or AA. Each new octave starts with 
a C by convention. 

5.2.2 Intervals 

The distance between two pitches is the musical interval. It is used for both the distance of 
simultaneously sounding pitches and pitches sounding one after another. Table 5.3 names 
commonly used intervals and their corresponding distance in semi-tones. 

Figure 5.5 displays the most important intervals (rising from pitch C4) in musical score 
notation. 

Humans will hear the same interval for different pairs of pitches if the ratio between 
their fundamental frequencies is the same. 

5.2.3 Root Note, Mode, and Key 

The musical key of a tonal piece of music is defined by both its mode and a wot note. 
The root note is the most important pitch class in a specific key. It is also referred to as 

the first scale degree and will usually appear most frequently in a piece of music. 
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Figure 5.4 Musical pitches (74 ... BA in musical score notation; enharnionically equivalent pitches 
are displayed twice 

Table 5.3 Names of musical intervals, their enharmonic equivalents, and their pitch distance in 
semi-tones 

Interval Enharmonic Equivalent A S T 

Unison 

Minor Second 

(Major) Second 

Minor Third 

Major Third 

(Perfect) Fourth 

Augmented Fourth 

(Perfect) Fifth 

Minor Sixth 

Major Sixth 

Minor Seventh 

Major Seventh 

(Perfect) Octave 

Diminished Second 

Augmented Unison 

Diminished Third 

Augmented Second 

Diminished Fourth 

Augmented Third 

Diminished Fifth/Tritone 

Diminished Sixth 

Augmented Fifth 

Diminished Seventh 

Augmented Sixth 

Diminished Octave 

Augmented Seventh 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

t = * S = _u_ ημ-
Unison Min. 2nd Maj. 2nd Min. 3rd Maj. 3rd 41.h 

I =te: =te= 
■ » -©- -Θ- ■«■ -Θ· -Θ-

Dim. 5th 5th Min. filh Maj. fitli Min. 7th Maj. 7th 

Figure 5.5 Musical intervals in musical score notation 
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Figure 5.6 Different modes in musical score notation starting at the root note C 

The mode defines a set of relative pitch relationships; an example would be: the distance 
between first and second scale degree is a major second, between first and third scale degree 
is a major third, etc. The most common modes are the major mode and the minor mode. 
Figure 5.6 displays an example set of different modes, all starting from the root note C. 
All modes except major mode and the two minor modes — aeolic mode and harmonic 
mode — are only of interest in specific musical styles and are usually not very important 
in the context of ACA. 

The key thus defines the set of pitch classes which are used to construct the tonal aspects 
of a piece of music. In popular music it is common for a piece to have exactly one key. 
There are many exceptions to this rule: the key can change within a piece (when a so-called 
modulation occurs) and non-key pitches may be used for musical reasons. 

Depending on the current root note and mode, up to six different accidentals have to be 
used to raise or lower the pitches in the musical score. The notational convention allows 
writing all key-inherent accidentals at the begin of a staff — the key signature — and to 
add only accidentals within the score where non-key-inherent pitches are used. Figure 5.7 
shows major modes with their key signatures starting from all possible root notes. 

As can be seen from Fig. 5.7, the root notes of keys that differ only in one accidental 
are always spaced by a fifth (F/C, CIG and GID, etc.). This relationship can be visualized 
by the so-called circle of fifths (Fig. 5.8). Strictly speaking, this circle is only closed in the 
case of enharmonic equivalence when Ffl equals Gb (see Sect. 5.2.5.2). 

Neighboring keys on the circle of fifths have all pitch classes but one in common; for 
example, G Major has the same pitches as C Major except for the F which is raised to 
an Ffl in G Major. 
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Figure 5.7 The twelve major keys in musical score notation, notated in the 4th octave 

The circle of fifths also exists for the (aeolian) minor keys with a minor being the key 
without accidentals. 

Since the circle of fifths shows the relation of different keys, it hints also at what mod-
ulations are more or less likely. To give an example, the most likely key changes from 
F Major would be either C Major, B\> Major, or d minor. The circle of fifths can 
thus be understood as a model for a distance map between keys. 

Keys construed from the same set of pitch classes such as C Major and a minor are 
called parallel keys; in the circle of fifths their distance is 0. In order to build an analytical 
model for key distances with a non-zero distance between parallel keys, the circle of fifths 
can be enhanced to a three-dimensional model. This model would feature two parallel 
planes, one containing the circle for major keys and the other for minor keys. Parallel keys 
thus share the same (x, y) coordinates but have a different z coordinate (which is then the 
distance between the two parallel keys). 

Approaches to automatic key detection from audio signals can be found in Sect. 5.5. 

5.2.4 Chords and Harmony 

The simultaneous use of (usually no less than three) different pitches creates a chord. 
Chords built of three pitches are referred to as triads. The most common chord types are 
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Figure 5.8 Circle of fifths for both major keys and minor keys, plus the number of accidentals of 
the key signature per key 

$ Ψ 
C Maj. c min. c dim. C Aug. 

i 
C Maj. 7th t: min. 7th C Dorn. 7th 

Figure 5.9 Common chords in musical score notation on a root note of C 

built of third intervals — a few examples are displayed in Fig. 5.9 with respect to a root 
note of C. Note that the same naming convention is used to label both the key and some 
common chords (e.g., C Major), so one has to derive from the context which of the two 
is meant. 

Chord-inherent pitches can be doubled in different octaves without changing the chord 
type. The chord's root note is the most commonly doubled pitch. If the lowest note of 
a sounding chord is not its root note it is called inverted. The first chord inversion of a 
C Major triad would therefore have the pitch classes (bottom-up) E — G — C. Figure 5.10 
shows the two possible inversions of a D Major triad. The second inversion usually 
appears less frequent than the first. 

Each chord can have one or more musical (harmonic) functions in a key and dependent 
on the musical context. The chord sharing the root note with the current key is referred 
to as the tonic and will most likely represent the tonal center. Other important harmonic 
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Figure 5.10 The two inversions of a D Major triad in musical score notation 

functions are the so-called dominant with the key's fifth scale degree as the root note and 
the subdominant with the key's fourth scale degree as the root note. Dominant chords will 
usually induce an expectancy of a following tonic in the listener. 

Approaches to automatic chord recognition from audio signals can be found in Sect. 5.6. 

5.2.5 The Frequency of Musical Pitch 

The most systematic model for relating musical pitch to frequency and vice versa is using 
the so-called equal temperament which also results in enharmonic equivalence (other tem-
peraments will be mentioned in Sect. 5.2.5.2). The best example for such a transformation 
is the MIDI scale in which each semi-tone has a distance of 1 to its nearest neighbor. The 
equations for the transformation from frequency /' to MIDI pitch p and vice versa are 

p(/) = 6 9 + 1 2 . 1 o g 2 ^ ) , (5.12) 

/(p) = fA4-2^. (5.13) 

The reference frequency JAA is the tuning frequency (see Sect. 5.2.5.1); using 12 times the 
logarithm to the base 2 ensures that each octave is divided into 12 parts of equal "length" 
and the constant 69 results in the pitch A4 having the index 69, a convention of the MIDI 
standard [3J. The MIDI pitch can be mapped easily to the pitch class index PC as intro-
duced above by using a modulo operation: 

PC(p) = mod (p. 12). (5.14) 

The unit cent Δ(7(/Ί, f-i) is a distance measure between two pitches or frequencies f\ and 
/2. It can be computed by 

AC(fuh) = 100-{9(fi)-p(f2)) 

= ^ • ( ( ^ + ^ - ^ ( £ ) ) - ( 6 9 + . 2 . 1 o g 2 ( A 

= 1 2 0 0 - l o g 2 ( £ y (5.15) 
h 

A semi-tone interval has thus a distance of 100 cents and an octave has a distance of 
1200 cents. 

5.2.5.1 Tuning Frequency 

The tuning frequency /^4 is the frequency of the concert pitch A4 (also: standard pitch) 
which is used for tuning one or more musical instruments. The tuning frequency is stan-
dardized internationally to 440Hz [HO], but the exact frequency used by musicians can 
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Table 5.4 Typical range of deviation of the tuning frequency from 440 Hz over three centuries 

Year Lower Deviation Upper Deviation 

1750 - 5 0 Hz +30 Hz 

1850 - 2 0 Hz +20 Hz 

1950 - 5 Hz +10 Hz 

0.25 r 

0.2 -

0.05 -

0 -
430 435 440 445 450 

/A4 [HZ] -> 

Figure 5.11 Distribution of tuning frequencies in Lerch's data set 

vary due to various reasons such as the use of historic instruments or timbre preferences. 
Two performances of the same piece of music using different tuning frequencies will differ 
in their average pitch height. 

The range of typical tuning frequencies decreased over the centuries. Table 5.4 shows 
this range for the past three centuries as deviation from 440 Hz [111]. 

Nowadays, while for many electronic music productions the "default" tuning frequency 
of 440 Hz is used, the tuning frequencies of orchestras still deviate from this standard tun-
ing frequency. For example, the Chicago Symphony Orchestra and the New York Philhar-
monic tune at 442 Hz, while the Berliner Philharmoniker and the Wiener Philharmoniker 
have a tuning frequency of 443 Hz.1 At least in the case of both European orchestras, 
the tuning frequency was higher in previous decades. The frequencies 442 and 443 Hz 
correspond to deviations of 7.85 and 11.76 cents from the standard tuning frequency, re-
spectively. 

There exist two studies analyzing the tuning frequency of a data set of recordings. Zhu 
et al. processed a database of 60 popular and 12 classical pieces2 and found only three 
pieces of this database with a deviation of approximately 2-4 cents from the standard tun-
ing frequency [112]. Lerch presented the results of a study with a large database of classical 
music, consisting of more than 3000 tracks and an overall playing time of approximately 
291 hours [113]. A histogram of the extracted tuning frequencies as displayed in Fig. 5.11 
shows a maximum at a tuning frequency of 440 Hz; the maximum itself consists of about 
2 1 % of the test database. The distribution has an arithmetic mean value of 442.38 Hz and 
a standard deviation of 2.75 Hz. The majority of the results (95%) is in the range from 439 
to 448 Hz and only 50% of the results have a tuning frequency in the range of 440-443 Hz. 
The percentage of files below 439 Hz is about 3.3%. 

1 According to the orchestra's archivists, March and April 2006. 
2The term classical music is in this context understood as "non-popular" music, as opposed to the epoch itself. 
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Table 5.5 Deviations of the Pythagorean, meantone, and two diatonic temperaments from the 
equally tempered scale in cents at a reference pitch of C (after Briner 1111]) 

Pitch Class 

C 

c* 
D 

Eb 

K 

F 

F* 

G 

A" 

A 

13" 

B 

Equally 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Pythagorean 

0 

-

+3.9 

-

+7.8 

-2 .0 

-

+2.0 

-

+5.9 

-

+9.8 

Meantone 

0 

-

-6 .9 

-

-13.7 

+3.4 

-

-3 .5 

-

-10.2 

-

-17.1 

Diatonic Major 

0 

-

+3.9 

-

-13.7 

-2.0 

-

+2.0 

-

-15.6 

-

-11.7 

Diatonic M 

0 

-

+3.9 

+ 15.6 

-

-2.0 

-

+2.0 

+ 13.7 

-

+ 17.6 
— 

The tuning frequency is not necessarily static once the instruments have been tuned; 
it may change during a concert or a recording session. On the one hand the tuning fre-
quency could be slowly decreasing as it sometimes happens at a cappella performances, 
on the other hand the tuning frequency may slightly increase, for example, due to a rising 
involvement of the musicians during the concert. The maximum range of this deviation 
can be assumed to be small in the case of professional musicians (about 3-5 cents). 

Approaches to estimate the tuning frequency of a music signal can be found in Sect. 5.4. 

5.2.5.2 Temperament 

The temperament defines a system of frequency ratios for intervals. 
In the equally tempered case assumed above the frequency ratio between the mid-

frequencies of two pitches /3 and f2 spaced by ΛΓ semi-tones (with N being a negative 
or positive integer) is always 

^ = 2Λ'/12. (5.16) 
J2 

Therefore, the distance between two pitches is constant and independent of tonal and har-
monic context; it stays also constant if the enharmonic equivalents of the two pitches are 
used: the interval B, F$ is the same as the intervals D, G\> or Cb, Gb. This, however, is 
only true for the equal temperament. 

The Pythagorean, meantone and diatonic temperaments are examples of other temper-
aments in which the pitches are tuned depending on the key. Basically, the Pythagorean 
temperament is constructed from perfect fifths (frequency ratio 3 : 2), the meantone tem-
perament is constructed with nearly perfect thirds, and the diatonic temperament intends 
to use as small frequency ratios as possible toward the tonic for every scale degree. 

Table 5.5 shows the deviations in cents of different temperaments from the equal tem-
perament. 
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Figure 5.12 Six harmonics of the fundamental pitch Ä& in musical score notation 

5.2.5.3 Intonation 

In contrast to temperament, the frequency of a certain pitch may vary over time depending 
on the musical context. This deviation from the frequency grid set by the temperament is 
called (expressive) intonation and is part of the musical performance. 

Obviously, only musicians who are not forced to a pre-defined temperament can use ex-
pressive intonation. Examples are vocalists as well as players of string, brass, or woodwind 
instruments, while, for example, piano players have no means of changing the pitch fre-
quency during a performance. It is generally assumed that musicians tend to produce pure 
frequency relationships such as Λ//2 = 3/2 for a fifth (seven semi-tones) because it sounds 
more "natural" [114]. Furthermore, if a specific note leads musically to the following, the 
frequency will in many cases be adjusted toward the following pitch. A good example are 
leading tones where the seventh scale degree leads to the first scale degree (in C Major: 
B^C). 

A special performance phenomenon related to expressive intonation is vibrato. Vibrato, 
a musical (performance) ornament, is a periodic frequency modulation of the pitch around 
its mean frequency. The extent and frequency of a vibrato is somewhat instrument depen-
dent; typical frequencies are in the range of 5-9 Hz and the amplitude may be as large as 
two semi-tones [45, 115, 116]. 

5.3 Fundamental Frequency Detection 

The basic assumption for all approaches to the estimation of the fundamental frequency 
(also referred to as pitch detection or pitch tracking) is that the signal is periodic or quasi-
periodic. The periodic state of an acoustic tone can be represented in a Fourier series as 
introduced in Sect. 2.1.1, meaning that it is a superposition of weighted sinusoidals. The 
frequency of these sinusoidals is an integer multiple of the lowest — the fundamental — 
frequency. The different frequency components of a tone are called harmonics or partials, 
with the first harmonic being the fundamental frequency. Higher harmonics are also called 
overtones. The first six harmonics of the musical pitch A3 are displayed in Fig. 5.12 in 
traditional musical score notation. 

This frequency structure can be found for most signals generated by acoustic or elec-
tronic instruments which are perceived as pitched sounds. However, there are certain de-
viations from this rule. For example, humans will hear the fundamental frequency of a 
harmonic series even without this frequency actually being present in the signal. Although 
an absent fundamental frequency occurs only rarely, it happens frequently that the first 
harmonic has lower energy than one or more of the higher harmonics. 

The piano and string instruments are examples of acoustic signals in which the harmon-
ics are not placed precisely at integer frequency multiples of the fundamental frequency 
but slightly off. A model of this deviation or inharmonicity is 

Λ = fc/oVl + A(A;2-l) (5.17) 
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with k being the index of the harmonic (in this case better called partial as it is not en-
tirely harmonic) and λ being the inharmonicity factor with typical values in the range 
[10-3; 10"4] [ 117|. There are also instruments which are perceived as being pitched but 
show no clean harmonic pattern. Examples for this class of instruments are the xylophone, 
the vibraphone, and timpani. Nevertheless, the assumption of quasi-periodic states of a 
music signal has in many cases been proven to be valid and successful for fundamental 
frequency detection. 

The common range of fundamental frequencies for musical instruments roughly starts 
between 20 and 50 Hz (e.g., on the double bass) and ends between 3-5 kHz (e.g., on the 
piccolo). Depending on the instrument, a number of at least three to seven harmonics 
should be considered to be important components of the sound (if components other than 
the fundamental frequency are of interest). 

5.3.1 Detection Accuracy 

Algorithms for fundamental frequency detection work either in the time domain by esti-
mating the period length of the fundamental or in the frequency domain by finding the 
frequency of the fundamental. Both are discrete value domains and have thus a maximum 
accuracy determined by the distance of two time domain samples and two frequency do-
main bins, respectively. There are work-arounds for virtually enhancing the resolution such 
as frequency reassignment (see Sect. 2.2.3.1), but for now the effects of this discretization 
on the accuracy of fundamental frequency detection will be investigated. 

5.3.1.1 Time Domain 

As already mentioned above, the estimated period length of the fundamental frequency is 
quantized to samples in the time domain, resulting in the estimated period length being a 
multiple of the distance between two samples 

TQ=j-Ts (5.18) 

with the integer multiplier j . This quantization leads to a certain amount of error depending 
on the sample rate and the period length. Figure 5.13 shows the minimum detection error 
in cent in dependency of the fundamental frequency for two different sample rates. The 
absolute worst-case error is small for low frequencies and increases with the frequency. 
Higher sample rates will result in smaller errors. 

5.3.1.2 Frequency Domain 

The trade-off between time resolution and frequency resolution is one of the big issues 
in STFT-based frequency analysis. While long analysis blocks increase the frequency 
resolution, they require a periodic and stationary signal during the analysis block in order 
to be useful. As can be easily seen from Eq. (2.44), the frequency resolution will stay 
constant if the ratio of sample rate / s and block length AC stays constant: 

Table 5.6 displays the frequency resolution for different STFT sizes. 
Figure 5.14 visualizes the error in cents for an analysis block length of 2048 samples at 

the sample rates 44.1 and 96 kHz. As the error is measured in cents (logarithmic scale) it 
decreases with increasing frequency (linear scale). 
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Figure 5.14 Detection error in cents resulting from quantization of the fundamental frequency to 
the STFT bin at an analysis block length of 2048 samples for two different sample rates 

Table 5.6 Frequency resolution of the STFT for different block lengths at a sample rate of 48 kHz 
with bin index and frequency of the first bin fcsT with a distance to the following bin smaller than 
half a semi-tone 

K. Δ / [ Η ζ /(fcsT) [Hz] 

256 

512 

1024 

2048 

4096 

8192 

16384 

187.5 

93.75 

46.875 

23.4375 

11.7188 

5.8594 

2.9297 

35 

35 

35 

35 

35 

35 

35 

6562.5 

3281.25 

1640.625 

820.3125 

410.1563 

205.0781 

102.5391 



94 TONAL ANALYSIS 

5.3.2 Pre-Processing 

As with nearly all signal processing algorithms, the results of fundamental frequency de-
tection might be improved by applying appropriate pre-processing steps such as down-
mixing, filtering, and sample rate conversion. Furthermore, it might be helpful in certain 
cases to remove noisy and non-tonal components before the actual detection. 

5.3.2.1 Filtering and Down-Sampling 

Since the range of fundamental frequencies is quite restricted compared to the sample rates 
used nowadays in audio signal processing, higher frequency components are frequently 
removed by both low-pass filtering and down-sampling the input signal. The cut-off fre-
quency of the low-pass filter depends on the fundamental frequency range of the input 
signal as well as on the usefulness of higher harmonics for the subsequent detection algo-
rithm. The target frequency of the resampling process might also depend on the required 
resolution for the period length estimation. 

In addition, a high-pass filter removing components near DC may be helpful to clean 
up the input signal — typical cut-off frequencies would be in the range of 30-300 Hz. 

5.3.2.2 Identification of Tonal Components 

The differentiation of tonal and non-tonal (sinusoidal and noisy) signal components is a 
crucial pre-processing step for many audio signal processing systems and remained an ac-
tive research topic through the last decades. The range of applications which can benefit 
from a reliable tonalness detector is wide: psycho-acoustic models in perceptual audio en-
coders can be optimized with a more accurate estimation of the signal-to-mask ratio, source 
separation algorithms may be improved by avoiding noise-like components, the quality of 
analysis/synthesis systems such as phase vocoders and audio restoration algorithms may 
increase by treating tonal and noisy parts differently, and the accuracy of pitch-based analy-
sis systems such as key detection and chord recognition and ultimately music transcription 
systems can be enhanced. 

As the variety and number of applications benefiting from the detection of tonalness 
suggest, there has been a plethora of publications dealing with the identification of tonal 
components. 

Research on this topic began in the 1970s when spectral processing of digital audio 
became more and more common. In contrast to non-spectral approaches targeting a single 
monophonic source signal distorted by noise (see, e.g., [118]), the analysis of individual 
spectral bins allows the processing of multi-voiced input signals. 

In the context of speech separation, Parsons identified peaks by finding local maxima 
in the magnitude spectrum — a first processing step that can be found in practically every 
publication dealing with the detection of tonal bins — and used the peak's symmetry, 
its proximity to the next peak as well as the continuity of the frequency bin's phase for 
detecting "peak overlaps," i.e., bins with supposedly two or more influencing sinusoidals 
[119]. Terhardt extended the concept of detecting the local maximum by expecting more 
distant bins (specifically the bins with a distance of 2 and 3) to be a certain level lower than 
the maximum itself [120]. Serra proposed a measure of "peakiness" of local maxima by 
comparing the bin magnitude with the surrounding local minima; he also discarded peaks 
outside of a pre-defined frequency and magnitude range L121]. 

An amplitude-based measure computing the correlation function between the magni-
tude spectrum and the shifted spectrum of the used window function has been presented 
by Peeters and Rodet [122] as well as Lagrange [123]. They also utilized a phase-derived 
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measure comparing the bin frequency of a peak with its reassigned (instantaneous) fre-
quency. 

In addition to a local maximum feature similar to Terhardt's, Every proposed a 
threshold-based feature computed from the low-pass filtered magnitude spectrum, dis-
carding peaks below the threshold [124]. 

Röbel et al. presented a set of features to classify spectral peaks into being sinusoidal 
or non-sinusoidal [125]. These features included the deviation of the bin frequency and its 
reassigned frequency, the peak's energy location according to its group delay, as well as 
the bandwidth of a spectral peak. 

All of the publications presented above make a binary decision for a spectral bin being 
tonal or not; Kulesza and Czyzewski proposed an algorithm which aims at estimating the 
likelihood of a bin's tonalness [126]. They refer to this as a scoring classifier. This non-
binary decision makes the algorithm probably most similar to the one outlined below; 
they use a so-called peakiness feature similar to Serra's, a frequency stability criterion 
for detected peaks, and a phase-based frequency coherence over subsequent blocks of the 
STFT. Their approach combines several features and uses a combination of heuristics and 
both binary and non-binary features to compute the resulting likelihood. 

A feature-based approach to tonalness detection is a systematic and extensible way of 
computing the likelihood of an individual spectral bin being tonal. One example of such 
an approach is outlined in the following. It is based on the following assumptions for the 
input signal: 

■ it is a time-variant mixture of tonal and non-tonal signals, 

■ it has an undefined number of (tonal) voices (i.e., it is polyphonic), and 

■ the spectral envelope of both tonal and non-tonal components is unknown. 

Furthermore, an individual tonal component is assumed to be 

■ salient, i.e., it is not masked by nearby components and has a certain intensity, 

■ deterministic, i.e., its phase cannot change erratically between the points of observa-
tion, and 

■ stationary for at least a minimum length of time. 

These expected properties should be described by a set of features in the spectral domain. 
Each feature by itself should be simple to compute as well as simple to understand; it 
focuses on one individual property or aspect of a tonal component. Each feature Vj(k, n) 
is the input of a Gaussian function φ(χ). Its output will be referred to as the specific 
tonalness Aj(k,n) € [0; 1] which is a measure of likelihood of the bin k in frame n being 
a tonal component with respect to feature j 

Aj(k,n) = ip(vj(k,n)) — exp (-e, · Vj(k,n)2) (5.20) 

with €j being the normalization constant. The specific tonalness Aj(k, n) is weighted and 
then combined to result in the overall tonalness. 

Since the feature output Vj (k, n) is in turn the input of the Gaussian function presented 
in Eq. (5.20), the features have to result in 0 output for tonalness and maximum output for 
non-tonalness. Examples of possible features are: 
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Local maximum: Declaring the local maxima to be candidates for being tonal is a 
rather self-evident step in spectral analysis. In the presented variation the M sur-
rounding bins are inspected for their magnitude being lower than the magnitude at the 
bin of interest: 

u, (fc, n) = Σ ( 1 - ^Jf~ ) ■ (^(A:> m< n) + ^(fc' ~m> ")) (5-21) 

with 

A(k.m.n) = l· V(\X(k,n)\-\X{k + m,n)\)<0 
V · ■ ' [0, if (\X(k,n)\- \X(k + m,n)\) > 0. 

The weighting increases the influence of nearby frequency bins on the likelihood. 

Peakiness: While the local maximum feature only takes into account whether the bin 
of interest has a higher magnitude than the neighboring bins, the peakiness evaluates 
their magnitude differences by relating the magnitude at the center bin with the mean 
of the neighboring magnitudes: 

2- \X(k,n)\ 

The more pronounced a peak is, the lower will the feature value be and the higher 
will its tonalness be. The result V2(k. n) also depends on the used STFT windowing 
function and the spread of its main lobe. Because of these windowing effects, it could 
also be of advantage not to use the direct neighbors but bins with a bin distance of two 
or more for the averaging function, or to use the closest local minima as proposed by 
Serra[1211. 

Thresholding: Since the tonal components are expected to be salient and to have more 
energy than noisy components, a magnitude threshold can be applied to increase the 
likelihood of bins with magnitudes above the threshold and decrease the likelihood 
of remaining bins correspondingly. This can be done by computing the ratio of a 
threshold G(k, n) and the spectral magnitude \X(k, n)\: 

V : ^ = WTTTr ( 5 · 2 4 ) 

\X(k,n)\ 
The threshold can be determined by taking the maximum of an absolute threshold, 
a threshold relative to the highest magnitude in the current frame, and an adaptive 
threshold computed from the smoothed magnitude spectrum Xhp{k, n): 

G{k,n) = max(A1,A2 · max(|X(fc,n)|), λ3 ■ XhP{k.n)) (5.25) 

with λ_, being user-defined weighting parameters. 

The smoothed magnitude spectrum Χ\^ may be computed with a single-pole filter: 

XhP(k,n) = a-XLP{k- l ,n) + (l -a) ■ \X{k,n)\ (5.26) 

which is applied over the frequency in both the forward and the backward direction to 
ensure zero-phase response (see Sect. 2.2.1.2). 
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This thresholding process can be interpreted in different ways. On the one hand, one 
could see it as a pre-whitening process as used, for example, in pitch tracking systems 
with the goal of removing the spectral envelope from the signal [28]; on the other 
hand, it can be interpreted as a rudimentary model of a perceptual masking threshold 
applied to detect unmasked bins. 

Frequency Coherence: While the features presented above were based on the mag-
nitude spectrum, the phase spectrum can also provide information on the tonalness 
of a frequency bin. More specifically, the instantaneous (or reassigned) frequency 
fi(k, n) (see Sect. 2.2.3.1) can be derived from the phase difference of overlapping 
spectra [17]. The instantaneous frequency has to be close to the bin frequency f(k) in 
case of the main lobe of a stationary sinusoidal, otherwise, i.e., in the case of a noisy 
signal or a side lobe, the instantaneous frequency will probably deviate from the bin 
frequency. Furthermore, the instantaneous frequency should be comparably constant 
over consecutive blocks so that results can be averaged over two or more blocks. The 
final feature is then the difference of bin frequency and the (weighted) average of the 
instantaneous frequencies at this bin: 

1 °~1 

v4(k,n) = f(k) - ^=—— Σ Ko ■ fi(k,n- n 0 ) . (5.27) 
P Ha no=0 

The overall tonalness A(k.n) is the weighted combination of each specific tonalness. It 
can be computed by the weighted arithmetic mean of the specific tonalness, an approach 
that shows similarities to a simplified Radial Basis Function (RBF) network [127], 

1
 4 

AA(k,n) = — V A j ■AJ(k,n) , AS = V A J , (5.28) 

or alternatively, when understood as a conditional probability, computed by the multipli-
cation of the specific tonalness 

4 

AG(Ln) = l[AJ{k,np'/^ , λ, = ] Γ λ ? , (5.29) 

5.3.3 Monophonic Input Signals 

A monophonic signal as opposed to a polyphonic signal3 is single-voiced. There will never 
be more than one fundamental frequency present at a time. The problem of detecting the 
fundamental frequency in monophonic signals is basically limited to detecting the longest 
periodicity period as the frequencies of the harmonics will be integer multiples of the fun-
damental frequency. Since many algorithms for monophonic input signals make heavy use 
of this property, they are of no or only limited use in the context of polyphonic input signals 
which are mixtures of multiple voices with possibly different and time-variant timbre. 

3The term polyphonic will be used for signals with multiple voices. It will not be used in the more music-theory-
related restricted definition of quasi-independent voices as opposed to homophonic, where the multiple voices 
move together in harmony. 
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5.3.3.1 Zero Crossing Rate 

The zero crossing rate has already been introduced in Sect. 3.4.3. There are two ways to 
estimate the fundamental period length with zero crossings; the first is to relate the number 
of zero crossings in an analysis block to its length, an approach that will only produce 
acceptable results for very large block sizes: 

T0(n) = 
(ic{n) - is(n)) 

/ s · E |sign [x{i)] - sign [x(i - 1)] | 

(5.30) 

and the second is to measure the interval Atzc(j) between neighboring zero crossings. 
This interval relates directly to the fundamental period length. If Z zero crossings have 
been detected in the analysis block, the fundamental period length can be estimated with 

2 - 2 

To(n) £ Δ ίζα(ζ ) · (5.31) 
ζ^-.Ό 

In case of large block lengths the time intervals can also be sorted into a histogram. The 
estimated period would then be the location of the histogram maximum multiplied by a 
factor of 2. 

A related approach is to investigate the distance not only between zero crossing but 
between local extrema such as the maximum and minimum to increase robustness as ex-
plained by Rabiner and Schäfer [1281. 

5.3.3.2 Autocorrelation Function 

The use of the normalized ACF (see Sect.2.2.6) is very common in fundamental period 
length estimation. The lag of the maximum value is a direct estimation of the fundamental 
period length. Certain restrictions to maximum detection as exemplified in Sect. 3.4.1.4 
can be applied to increase the algorithm's reliability. 

Pre-Processing: Center Clipped Autocorrelation Function 

The robustness of the detection can sometimes be improved by using so-called center clip-
ping [128]. The non-linear function χ as shown in Fig. 5.15 (left) is applied to the input 
signal x(i) 

x<-{i) = x{x(i))· (532) 

xW 

+f'l. 

χ'(χ·) 

J 
+ , n 

+CL 

- 1 

Figure 5.15 Non-linear pre-processing for ACF-based pitch period estimation: standard center 
clipping (left) and 3-level center clipping (right) 



FUNDAMENTAL FREQUENCY DETECTION 9 9 

The idea of center clipping is to yield a result with more easily identifiable peaks. Typ-
ical thresholds CL are chosen between 30% and 60% of the (instantaneous) maximum am-
plitude. 

An alternative 3-level center clipping function χ' is shown in Fig. 5.15 (right). This 
function allows a very efficient computation of the ACF because the input signal then only 
has the three possible amplitudes —1,0, +1 . This performance optimization is usually not 
necessary anymore on modern hardware. 

ACF Pre-Processing: Pre-Whitening 

If the analyzed signal can be assumed to originate from a pulse-like excitation signal fil-
tered with a transfer function, a common assumption in speech signal processing, a rea-
sonable approach is to reverse the filtering process by estimating the smoothed spectral 
envelope of the current analysis block and apply the inverse filter to the signal — pre-
whitening. The goal of the inverse filtering process is to convert the signal back to the 
initial pulse train in order to improve the results of the following correlation analysis. 

There exist numerous ways to estimate the spectral envelope, including a low-order 
linear predictive filter (see Sect. 2.2.7), a smoothed power spectrum, or cepstrum-based 
iterative methods [129]. 

5.3.3.3 Average Magnitude Difference Function 

The Average Magnitude Difference Function (AMDF) is similar to the ACF but avoids the 
use of multiplications and is therefore computationally efficient. The AMDF is computed 
by [130] 

i e (n ) -7 ) 

A M D F i r f a n ) = . ^ : , „ , , . , ^ \x(i)-x(i + v)\- (5-33) 
1 

ie(n) -is(n) + 1 

The estimated fundamental period length is then chosen to be the lag of the overall min-
imum if its value is also smaller than a certain (signal adaptive) threshold. The popular 
pitch tracking algorithm YIN utilizes the AMDF [131]. 

5.3.3.4 AMDF-Weighted Autocorrelation Function 

The AMDF can also be used to weight the ACF. There are indications that this weighting 
leads to quite robust results [132]: 

rxx(v,n) = ——. (5.34) 
ΑΜΏΥχχ(η,η) + 1 

5.3.3.5 Harmonic Product Spectrum and Harmonic Sum Spectrum 

The Harmonic Product Spectrum (HPS) is an efficient method for finding the periodic 
harmonic pattern of an acoustic tone in its stationary state [133, 134]. It is defined by 

o 
Xups(.k,n) = l[\X(j-k,n)\2. (5.35) 

3 = 1 

The parameter Ö is the order of the HPS. 
The idea of the HPS is that the compression of the frequency axis by integer factors j 

causes higher harmonics at multiples of the fundamental frequency to coincide at the bin 
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Figure 5.16 Compressed spectra with j = 1, 2, 3,4 (top) and resulting HPS (bottom) 

of the fundamental frequency. Thus, the first O harmonics will be mapped to their funda-
mental frequency. Since the harmonics can be assumed to have significantly higher power 
than any other signal components, the resulting (harmonic product) spectrum XHPS(^>

 n) 
should have a clearly identifiable peak at the fundamental frequency. Figure 5.16 exem-
plifies this: the resulting peak in the HPS has a significantly higher distance to the second 
highest peak than in the original spectrum. 

Alternative implementations of the HPS use the magnitude spectrum. 

Typical Problems 
If the fundamental frequency of the input signal is not located exactly on a frequency bin 
but between two bins, then the maxima of higher order harmonics will not be taken into 
account for the decimated spectra. The likelihood of missing the locations of the maxima 
increases with j . Two possible work-arounds can be used, but both will result in less 
efficient and more complicated implementations: 

■ increase the frequency resolution by using longer STFT block sizes or by interpolating 
(up-sampling) the spectrum, or 

■ take the maximum within a bin range for the multiplication. The bin range will have 
to increase by ±1 bin with every increment of j . 

If one of the harmonics is zero or near zero, the detection of the fundamental frequency 
will probably fail as the HPS at the fundamental frequency bin will be scaled with (near) 
zero. One approach to avoid this is to compute the Harmonic Sum Spectrum (HSS) with a 
definition similar to the HPS [134]: 

o 

XHSs{k,n) = J2\xÜ-k>n)\2- (5-36) 

While the HSS is more robust against missing harmonics, the resulting maximum is usually 
not as pronounced as in the HPS. 
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Figure 5.17 Magnitude spectrum (top) and ACF of this spectrum (bottom) 

5.3.3.6 Autocorrelation Function of the Magnitude Spectrum 

The usage of the ACF is a very intuitive approach to finding periodicities. Since the har-
monics are equally spaced in the magnitude spectrum and the distance of neighboring 
harmonics equals the fundamental frequency, finding this periodicity is equivalent to find-
ing the fundamental frequency. The lag of the maximum of the ACF is an estimate of 
the fundamental frequency in spectral bins. Figure 5.17 shows the result of the ACF of a 
magnitude spectrum. 

5.3.3.7 Cepstral Pitch Detection 

Cepstralpitch detection is based on the assumption that the analysis signal x(i) is the result 
of a convolution of an excitation signal e(i) with a transfer function h(i) 

x(i) = e(i)*/i(i). (5.37) 

This is a common assumption in speech signal processing; the excitation signal originates 
from the air streaming through the glottis. This excitation signal e(i) consists of quasi-
periodic pulses in the case of voiced (tonal) sounds [128]. The vocal tract and the nasal 
tract act as tubes that shape the frequency spectrum with the transfer function h(i). 

Equation (5.37) can be rephrased in the frequency domain (see Sect. B.1.3) as 

X(ju>) = £(J<") · H(jui). (5.38) 

If a (complex) logarithm is applied to this equation, the result is 

log(XG<")) = log (E(ju) · #(j<")) 
= log(£( jW))+log(t f ( jW)) . (5.39) 

Applying the logarithm allowed us to replace the multiplication with an addition. We 
define the cepstrum cx(i) to be the inverted logarithmic spectrum 

cx(i) = ff-'OogpfCJ"))} 
= r 1 { l o g ( ^ ( J w ) ) + log(//(jw))} 

= r 1 0 o g ( ^ ( J w ) ) } + ^ - 1 0 o g ( i i ( J w ) ) } . (5.40) 
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Figure 5.18 Magnitude spectrum (top) and cepstrum of this magnitude spectrum (bottom) 

The inverse-transformed spectrum thus consists of signals e(i) and h(i) being added (al-
though logarithmically) instead of being convolved. In order to emphasize the difference 
between the original time domain and the cepstral domain, the term quefrency is frequently 
used as axis label. 

The cepstrum can be approximated by only using the magnitude spectrum 

V*-i 
cx(iB(n)...ie(n)) = Σ log( |X(A:,n) |) , jkiAn (5.41) 

and avoiding the use of the complex logarithm. 
The cepstrum has two properties that are of particular interest in the context of pitch 

detection [133, 135]. First, a pulse-like excitation signal will also lead to a pulse in the 
cepstrum, and, second, the cepstrum will decay rapidly for large i. Therefore, the detection 
of a peak (or more accurately a pulse train) in the cepstrum should give the period length 
of the fundamental frequency. Figure 5.18 shows the cepstrum of an exemplary magnitude 
spectrum. 

5.3.3.8 Auditory Motivated Pitch Tracking 

A rather important class of pitch detection algorithms use models of human pitch percep-
tion to determine the pitch of a signal. Meddis and O'Mard describe the processing stages 
of such algorithms as [136]: 

1. band-pass filtering, 

2. HWR [see Eq. (3.33)] and band processing, 

3. within-band periodicity extraction, and 

4. across-band aggregation of periodicity estimates. 

The filterbank used for band-pass filtering is frequently a gammatone filterbank as the 
"standard" filterbank for auditory processing. Gammtone filters have been introduced in 
Sect. 2.2.5.1. 
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Figure 5.19 Time domain (left) and frequency domain (right) for a signal consisting of the 13th 
to 17th partial of a sound with a fundamental frequency of 187.5 Hz (top), the corresponding signal 
subjected to HWR (mid), and the low-pass filtered signal subjected to HWR (bottom) 

Klapuri pointed out the importance of HWR on the filter channel outputs for funda-
mental pitch estimation [137]. Figure 5.19 shows this effect for one band containing the 
13th—17th harmonics of a periodic sound: new frequency components are being generated 
at the distance of frequency components in the signal and thus around the fundamental fre-
quency. Further band processing might include gain compression by, for instance, scaling 
the variance to unity [137]. 

A periodicity analysis of the filterbank outputs zc(i) may then be used for the detection 
of the fundamental period length by, for example, applying an ACF to each channel 

/c-i 
rzz(c,n,η) = ^ zc(i) ■ zc(i + η) (5.42) 

η=0 

and summing the resulting ACFs 

c-i 

rA(n, η) = Σ r^(c>n' ̂ )· (5·43) 
c=0 

5.3.4 Polyphonic Input Signals 
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Most of the algorithms outlined above will not work well in the case of polyphonic signals 
with multiple simultaneous fundamental frequencies. The number of simultaneous pitches 
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in polyphonic signals depends on genre, epoch, and musical context. In most cases the 
number of independent voices will be between one and eight. 

One of the first multi-pitch detection systems was presented by Chafe et al. in 1985 
[138]. They pick spectral magnitude peaks in a multi-resolution FT and derive candidates 
for fundamental frequencies by grouping the peaks with respect to their frequency ratio. 
The detected candidates are then tracked in the spectrogram to discard spurious detections. 
Nowadays, multi-pitch detection is a lively research field with numerous methods and 
approaches of which only a few basic ones will be described below. 

5.3.4.1 Iterative Subtraction 

The principle of iterative subtraction is to apply a fundamental frequency detection algo-
rithm for monophonic input signals to the signal to extract the predominant fundamental 
frequency, then find a way to subtract this and related (mostly harmonic) frequency com-
ponents from the original signal and repeat the process on the residual until the criterion 
for termination has been reached. 

An early reference to such an algorithm in the spectral domain has been published by 
Parsons [ 119) who — inspired by the work of Schroeder [133] — constructed a histogram 
of spectral peaks and their integer submultiples, chose the largest peak for the first funda-
mental frequency estimate, and removed this estimate and its multiples from the histogram 
to detect the second fundamental frequency. Klapuri et al. published two adaptations on 
the iterative subtraction procedure more recently. They use an auditory-motivated mono-
phonic fundamental frequency detection algorithm to find the predominant, most salient 
fundamental frequency and estimate the spectrum of the voice with this frequency to sub-
tract it from the original spectrum for the detection of additional voices [139, 140]. 

Cheveigne proposed a system for the tracking of multiple pitches in the time domain 
[141, 142]. First, the squared AMDF (compare Sect. 5.3.3.3) is computed with 

ASMDF^r , , n) = _ [ + 1 g (*(*) - *d + ',))2- (5-44) 
i — isiri) 

Then, the most salient period length is found at the lag of the ASMDF minimum: 

f/min = V |miiHASMDFIX(r;,n)) · (5.45) 

In order to remove the detected frequency and its harmonics from the signal, a (FIR) comb 
cancellation filter is applied to the signal with a delay corresponding to the lag of the 
detected minimum. The comb filter has the impulse response 

h(i) = δ(ι) - δ(ι - Vmi„) (5.46) 

and not only attenuates the detected fundamental frequency but also its harmonics at inte-
ger multiples. The process can then be repeated for the detection of a second fundamental 
frequency. It is also possible to implement this approach non-iteratively by using an ex-
haustive search. In this case, two cascaded cancellation filters can be applied to the signal 
in all possible combinations of ηι and 7/2· The most likely pair of fundamental period 
lengths is the combination of r/i and 772 which minimizes the overall output power of the 
output signals. 

Meddis and Hewitt use an auditory approach similar to the one described in Sect. 5.3.3.8 
for detecting one fundamental frequency and then use all remaining filter channels, i.e., 
filter channels not showing a peak at the detected frequency, to detect more fundamental 
frequencies [143]. The iteration process is terminated if more than 80% of the channels 
have been removed. 
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Figure 5.20 Magnitude spectrum (top), ACF of the signal subjected to HWR and harmonic ACF 
processing according to Karjalainen and Tolonen 

5.3.4,2 Karjalainen and Tolonen 

Another auditory-inspired multi-pitch detection algorithm focusing on computational effi-
ciency has been published by Karjalainen and Tolonen [28, 144]. In a pre-processing step, 
they apply pre-whitening to flatten the spectral envelope. The spectral envelope is esti-
mated by frequency-warped linear prediction. The next processing step splits the signal 
into a low-pass band and a high-pass band with a cut-off frequency of 1 kHz. The filter 
outputs are then subjected to HWR and smoothed with a low-pass filter. The periodicity 
within each band is estimated with an ACF. In an attempt to model auditory loudness scal-
ing, the generalized ACF as introduced in Eq. (2.74) is used with an exponent of ß = 2/3. 
The two resulting functions are then added to result in an overall summary ACF. 

This summary ACF is then harmonically processed with an idea similar to HPS. The 
harmonic post-processing is an iterative process in which an interpolated, time-scaled 
and half-wave rectified version is subtracted from the half-wave rectified ACF τ{η, η) = 
r(j,V,n): 

r(j,η,n) = HWR (HWR (r(j - Ι,η,η)) - HWR(r (j, v/j,n))) (5.47) 

with r (j, v/j, n) generated with linear interpolation. 
The repeated application of HWR in combination with scaling aims at discarding fre-

quencies other the fundamental frequencies. Figure 5.20 shows the result of a "normal" 
ACF with HWR and an harmonic ACF of the same block. 
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5.3.4.3 Klapuri 

Klapuri makes use of an auditory approach by computing the normalized filterbank outputs 
after HWR [145]. He then computes the STFT of each filter band, sums their magnitudes 

c - i 
Z(k,n) = Y/\Zr(k,n)\, (5.48) 

c=0 

and weights the resulting overall spectrum Z(k, n) with a low-pass filter transfer function. 
To identify possible fundamental frequency candidates, a set of delta pulse templates is 
used representing every detectable fundamental frequency with its harmonics. Similar to 
the calculation of the HSS, these templates are multiplied with the spectrum, and the result 
can be used as an estimate for the salience of each fundamental frequency. The components 
of the most salient frequency are then being removed from the spectrum to find the next 
fundamental frequency in an iterative process. 

5.3.4.4 Other Methods 

Probabilistic approaches aim at modeling the pitch tracking problem by means of a statis-
tical framework. To give only one example. Kameoka et al. model a tone in the frequency 
domain as a superposition of weighted Gaussian distributions at integer multiples of the 
fundamental frequency and its power envelope function in the time domain by overlapping 
Gaussian distributions [146]. The spectrogram is then composed into clusters which model 
individual notes. 

Non-negative matrix factorization, introduced by Lee and Seung [147], has attracted 
noteworthy attention in the context of multi-pitch detection during the last decade. It 
decomposes a time-frequency representation into a matrix containing the spectra of the 
individual sounds and another matrix containing the information on when each of the in-
dividual spectra is active. Smaragdis and Brown applied the technique to the magnitude 
spectrogram in order to detect pitches with promising results [148]. 

5.4 Tuning Frequency Estimation 

The computation of the tuning frequency (see Sect. 5.2.5.1) is a prerequisite for every 
mapping from frequency to musical pitch given in Eq. (5.12). Examples of applications 
utilizing this mapping are key detection, chord recognition, automatic transcription and 
melody finding. Many of the published algorithms are based on the assumption that a 
tuning frequency of 440 Hz has been used for the recording. This assumption works rea-
sonably well in many cases, but in general the tuning frequency should be detected from 
the audio in order to improve detection accuracy [113]. This is particularly true when the 
tuning frequency can be expected to change over time. 

To estimate the tuning frequency from an audio signal, Scheirer used a set of narrow 
band-pass filters with their mid-frequencies at particular bands that had been handpicked to 
match pitches from the previously analyzed score [ 149]. These filters are swept over a small 
frequency range such as a semi-tone. The estimated tuning frequency is then determined 
by the mid-frequency of the maximum of the sum of the energy of all filterbank outputs. 

Dixon proposed to use a peak detection algorithm in the frequency domain and to cal-
culate the instantaneous frequency of the detected peaks [150]. The equally tempered ref-
erence frequencies are then modified iteratively until the distance between detected and 
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reference frequencies is minimized. The amount of adaptation is the low-pass filtered ge-
ometric mean of previous and current reference frequency estimate. 

Zhu et al. computed a CQT with the frequency spacing of 10 cents over a range of 7 
octaves [112]. The detected peaks in the CQT spectrum are grouped based on the mod-
ulus distance against the concert pitch, resulting in a 10-dimensional histogram spanning 
100 cents. If the maximum cumulative energy of the histogram is below a certain energy 
threshold, it is discarded. For the results of all processing blocks, a 10-dimensional average 
tuning pitch histogram is computed and the overall tuning frequency is chosen correspond-
ing to the position of the histogram maximum. 

In the context of single-voiced input signals, Ryynänen added the modulus distance of 
detected fundamental frequencies to a 10-dimensional histogram that is low-pass filtered 
over time [151]. Then, a "histogram mass center" is computed and the tuning frequency is 
adjusted according to this mass center. 

Dressier and Streich modeled the tuning frequency deviation in cents with a circular 
model 

z(n) = r n . e X p ( j | ^ A C ( / n , 4 4 0 H Z ) V (5.49) 

χ ΛΤ-1 

n = 0 
A a r i i ix ■, ) 

fA4 = 2-5^5- -440 [Hz], (5.51) 

and used different measures for rn: the magnitude of salient spectral peaks, the magnitude 
of the estimated fundamental frequencies of the melody, and the magnitude of the average 
melody pitch, disregarding deviations such as vibrato [152]. As an alternative to computing 
the arithmetic mean, they propose constant adaption by low-pass filtering rn with a single-
pole filter. 

Lerch proposed using a bank of steep resonance filters for detecting the tuning fre-
quency, allowing both real-time processing and adaptation to a time-variant tuning fre-
quency [113, 153]. In the range of two octaves, there are 24 groups of filters in (equally 
tempered) semi-tone distance, with each group consisting of 3 filters. The mid-frequencies 
of each group are narrowly spaced, and the mid-frequency of the centered filter is selected 
based on the most recent tuning frequency estimate. The filter output energy over a time 
window is then grouped based on the modulus distance against the concert pitch, resulting 
in a three-dimensional vector E. The symmetry of the distribution of the three accumulated 
energies gives an estimate on the deviation from the current tuning frequency compared to 
the assumption. If the distribution is symmetric, i.e., E(0) equals E(2), the assumption 
was correct. In the other case, all filter mid-frequencies are adjusted with the objective to 
symmetrize the energy distribution for the following processing blocks. The adaption rule 
used is the RPROP algorithm which allows fast and robust adaptation without the require-
ment of a signal-dependent adaption step size [154]. More specifically, the adaption rule 
for the adjustment of the estimated tuning frequency JAA of the next processing block n + 1 
is 

/ A 4 (n + 1) = (1 + sign (E(2) - E(0)) ■ η) ■ /A 4(n) (5.52) 

with η being scaled up if the direction of the previous adaptation was the same and scaled 
down otherwise. The advantage of the scaling is an increasing step size as long as the sign 
does not change and a decreasing step size otherwise. Figure 5.21 shows the adaptation 
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Figure 5.21 Adaptation of the tuning frequency estimate from an initial setting of 440 Hz to the 
target frequency of 452 Hz with the RPROP algorithm 

from the initial tuning frequency of 440 Hz to the real frequency of 452 Hz. Adaptation 
can be tuned either for speed or for accuracy. 

5.5 Key Detection 

The musical key is an important tonal property of a piece of tonal music as it signifies the 
tonal center and restricts the pitch classes used within this key context. In classical music, 
the key is one descriptor used to identify a specific piece of music, complementing name, 
genre, and opus. In modern software applications for DJs the key is used to display the 
tonal compatibility between two tracks, i.e., to visualize how much "tonal overlap" they 
have to aid so-called harmonic mixing. 

Since the key can be seen as a set of "allowed" pitch classes, the usual approach is to 
make use of an octave-independent representation of pitch for its automatic detection. The 
most common representation is the so-called pitch chroma. 

5.5.1 Pitch Chroma 

The pitch chroma (sometimes also referred to as pitch chromagram or pitch class profile) is 
a histogram-like 12-dimensional vector with each dimension representing one pitch class 
(C, Cft, D, . . . , B; compare Sect. 5.2.1). It can be seen as a. pitch class distribution for 
which the value of each dimension may represent both the number of occurrences of the 
specific pitch class in a time frame and its energy or velocity throughout the analysis block. 

There are several advantages of using pitch chroma-based analysis. It is less dependent 
on timbre fluctuations and noise than many other feature. The pitch chroma is also robust 
against loudness fluctuations as well as against octave errors — a typical problem of pitch 
detection algorithms — with the self-evident disadvantage that the octave information is 
lost. It is, for example, not possible to distinguish between a note repetition an an octave 
interval with the pitch chroma representation. 

While a representation of pitch similar to the pitch chroma has been frequently used 
in the past (see, e.g., Krumhansl's tonal distributions [155]), Bartsch and Wakefield were 
probably the first to propose its use in the context of audio signal processing [156]. Nowa-
days, this representation can be frequently found in publications in the context of ACA 
[157]. 
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Figure 5.22 Window function for pitch class E for pitch chroma computation (octaves 5 . . . 8) 

The exact algorithmic description of the pitch chroma computation varies from publi-
cation to publication; in all cases 

■ a frequency representation of the audio signal block is grouped into semi-tone bands, 

■ a measure of salience is computed in each band, and finally 

■ the sum of all bands (over all octaves) corresponding to a specific pitch class is calcu-
lated. 

The simplest way to extract the pitch chroma sums the STFT magnitudes in each semi-
tone band with the boundary indices k\,ku, and the result in every octave o is added to the 
corresponding pitch chroma entry with pitch class index j : 

v(j-,n) Σ 1 
feu(oj') 

0_0 . K{o,j) -h(o,j) + -
o—o\ \ K=ki(o,j) 

Ί Σ \χ^ 
v{n) = [ι/(0, n), v(l, n), v(2,n), ..., v(10,n), v(ll,n)] . 

(5.53) 

(5.54) 

The indices fci, ku are located at a distance of 50 cents from the mid-frequency of each 
equally tempered pitch. 

Figure 5.22 shows the semi-tone bands for the pitch class E (pitch class index 4) in the 
octaves 5-8. Note that the window bandwidth is constant on the pitch axis; on the linear 
frequency axis it would increase with increasing frequency. 

Frequently the pitch chroma is normed so that the sum of all possible pitch classes 
equals 1: 

uN(n) = v(n) · — . (5.55) 

3=0 

Occasionally the pitch chroma is interpreted as a vector and is normed to a length of 1 
instead: 

vN(n) = v{n) 1 

Σ ^0»2 
(5.56) 

\ 3=0 
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Figure 5.23 Frequency response of the resonance filterbank with one filter per semi-tone 

5.5.1.1 Common Variants 

The two main stages in the pitch chroma computation allowing alternative implementations 
are the type of the frequency transform and the selection of spectral content to sum. 

When using an STFT as frequency transform, different windows with triangular, trape-
zoid, or sinusoidal shapes can be applied to each semi-tone band to weight bins in the 
center of the band higher than bins at the boundaries, as opposed to the rectangular win-
dow implicitly used in Eq. (5.53) and plotted in Fig. 5.22. Furthermore, the pitch chroma 
can be computed from a peak-picked or tonalness-weighted magnitude spectrum since only 
the tonal components are of interest for this feature. 

A modification of the STFT has been used by Cremer and Derboven [158] for the com-
putation of the pitch chroma: they utilize a so-called frequency-warped STFT as intro-
duced by Oppenheim et al. which uses a chain of first-order all-pass filters to achieve 
non-equidistant spacing of the frequency bins [159]. The CQT as introduced in Sect. 2.2.4 
can also be used for pitch chroma computation [ 160]. In this case the number of bands per 
semi-tone will equal 1 or be constant. It is also possible to use a filterbank with one filter 
for each semi-tone. Lerch used a bank of resonance filters as shown in Fig. 5.23 [153]. 

The analysis window length for the computation of one pitch chroma is another pa-
rameter allowing variations between different algorithms. While in the simplest case the 
STFT length equals the extraction window length [161, 162], other algorithms combine a 
fixed number of short analysis blocks [163] or adapt the extraction window length to the 
period between two neighboring beats [164] or to a measure of harmonic change in the 
audio [165]. The extraction window length obviously also depends on the task at hand; 
key detection requires comparably long windows as opposed to chord recognition which 
usually requires window lengths between a beat and a bar length. 

5.5.1.2 Properties 

In most audio applications, the pitch chroma is used as if only fundamental frequencies 
(and no overtones) have been mapped to it. In reality, all frequency content in the pre-
defined frequency range of interest is mapped to the pitch chroma, regardless of it being a 
fundamental frequency or a higher harmonic. This leads to two possible problems: 

■ High non-power-of-two harmonics lead to distortions in the pitch chroma by adding 
undesired components. Figure 5.24 displays a series of harmonics with the funda-
mental pitch 4̂3 and the resulting pitch chroma which shows spurious components at 
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Figure 5.24 Pitch chroma of the pitch A3 with harmonics 

Table 5.7 Deviation (in cents) of seven harmonics from the nearest equally tempered semi-tone 
mid-frequency 

Harmonic 

f = fo 
/ = 2 · /o 

/ = 3 ■ /o 

/ = 4 · /o 

/ = 5 · /o 

/ = 6 · /o 

/ = 7 · /o 

| A C ( / , / r ) | 

0 

0 

1.955 

0 

13.6863 

1.955 

31.1741 

MIAC! 6.9672 

£ and Ctf and to a lesser degree at G and £?. It is possible to partly compensate for 
that effect by using an amplitude model for the harmonics and modifying the pitch 
chroma accordingly [160]. The effect can also be attenuated by applying a weighting 
function to de-emphasize higher frequencies (see e.g. [166]). 

■ High harmonics may even be able to distort the pitch chroma in a different way: since 
the harmonics will deviate from the equal temperament — the temperament the pitch 
chroma computation is based on — they may map to pitches not really part of the 
tonal context. This effect is, however, of limited influence since the deviation of the 
lower harmonics is relatively small as shown in Table 5.7. 

The only possibility to avoid these artifacts is to use a multi-pitch detection system as 
a pre-processing step which ensures that only fundamental frequencies are mapped to the 
pitch chroma (compare [163, 167, 168]). 

The pitch chroma entries may be ordered differently to reflect tonal relationships be-
tween the pitch classes. One way to do so is to replace the standard modulo operation for 
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Table 5.8 Pitch class order in the original and the rearranged pitch chroma 
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F 

computing the pitch chroma index as given in Eq. (5.14) by a shifted version: 

P C s ( p ) = mod (7· p, 12). (5.57) 

This results in related keys with a distance of seven semi-tones to be close to each other. 
Table 5.8 shows the pitch class order of the rearranged chroma. Certain similarity measures 
such as the CCF will behave more gracefully or musically meaningful when using this 
resorted pitch chroma [112, 157]. 

5.5.1.3 Pitch Chroma Features 

Similar to extracting instantaneous features from a spectrum, instantaneous features can 
be extracted from the 12-dimensional pitch chroma as well. The computation of statistical 
features such as the standard deviation is only of limited use due to the small number 
of elements. It should also be kept in mind that the pitch chroma is neither a series of 
observations nor a position in a space with 12 unrelated dimensions; it is a distribution. 

There is no established set of features to be extracted from the pitch chroma, although 
the set of three features presented by Tzanetakis et al. proved to be simple yet effective 
[157]. They use both the index and the amplitude of the pitch chroma maximum as well as 
interval between its two highest bins. For the latter feature, the pitch chroma is rearranged 
in order to place related keys as neighbors (see above). 

There exists a multitude of other features to extract from a pitch chroma that might 
be useful in certain applications. Possibilities include a pitch chroma crest factor or the 
centroid of the resorted pitch chroma. 

5.5.2 Key Recognition 

Using the assumptions that (a) the occurrence of key inherent pitch classes is more likely 
than the occurrence of non-key pitch classes and that (b) the number and energy of occur-
rences is an indication of the key, the two basic processing steps for automatic key detection 
are 

■ the extraction of a pitch chroma to estimate a pitch class distribution, and 

■ the computation of the likelihood of the extracted pitch chroma being a specific key 
and selecting the most likely one. 

The various approaches of extracting the pitch chroma have been discussed in Sect. 5.5.1. 
The time frame over which the pitch chroma is extracted can vary from the whole file to 
a common texture window length. It is also possible to extract the pitch chroma only at 
the beginning and end of the audio file because the key is usually less ambivalent in these 
regions [153]. 

5.5.2.1 Key Profiles 

The likelihood of a specific key is usually computed by comparing the extracted pitch 
chroma with a template pitch chroma, in the following referred to as key profile. The 
template minimizing the distance to the extracted pitch chroma will be the most likely key. 
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Various templates can be used (see also the summary in Table 5.9 for C Major): 

■ Orthogonal u0: The orthogonal template assumes that the root note is the most salient 
component of the pitch chroma and that all other keys have the same distance (and are 
thus unrelated). The template allows no distinction between major mode and minor 
mode. 

■ Smoothed Orthogonal us: The smoothed orthogonal template is, as the name says, a 
low-pass filtered version of the simple orthogonal template. It results in an increasing 
distance with increasing index distance with a distance maximum for the key at the 
tritone. 

■ Diatonic v&: The diatonic template is 1 for every key inherent pitch class and 0 
otherwise. The distance to other keys increases linearly like an "unwrapped" circle of 
fifths. It allows no distinction between major mode and minor mode. 

■ Circle of Fifths v^: The distance of two keys can be modeled by its distance in the 
circle of fifths with respect to its radius r. The coordinates of each key are given by 
the angle of the key in the circle of fifths. Each key has the same distance r to the 
point of origin. The model can be expanded into a third dimension to also include a 
distance between major mode and minor mode. 

■ Probe Tone Ratings uv: Krumhansl's probe tone ratings are not directly a key descrip-
tion but are the result of a listening test evaluating how a pitch fits into a given tonal 
context [155]. However, Krumhansl showed in experiments that these probe tone rat-
ings correlate well with the number of occurrences of the pitch classes in real pieces 
of music. 

■ Extracted Key Profiles vt: Key profile vectors can also be derived from real-world 
data. The template given in Table 5.9 has been published by Temperley and has been 
extracted from symbolic data [169]. 
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The top left plot of Fig. 5.25 shows the listed key profiles in a bar graph. In this specific 
plot they are normed to a vector length of 1 with Eq. (5.56) as opposed to a sum of 1 as the 
entries in Table 5.9. 

5.5.2.2 Similarity Measure between Template and Extracted Vector 

The most likely key can be estimated by finding the minimum distance between the ex-
tracted pitch chroma vc and the key profile template. Under the reasonable assumption 
that the template key profiles for different keys are identical but shifted versions of the 
C Major profile, only 1 template needs to be stored per mode. Detecting modes other 
than major mode and minor mode is not of relevance in practice; thus, only 2 template 
vectors have to be stored to generate an overall set of 24 shifted templates. 

The index m of the most likely key can then be computed by finding the minimum 
distance d between the extracted pitch chroma vQ and the set of 24 template key profiles 

f t : 
(5.58) m = min (d(s)). 

0<.s<24 

Typical distance measures are 

■ Euclidean Distance: 

dE{s) 

N 
Σ(^ω-^ω)2 

(5.59) 

i=» 

Manhattan Distance: 

Cosine Distance: 

<M.s) = X ^ M J ) - n,»(i) 
.7=0 

(5.60) 

dc(s) = 1 

Σ feO') -ft,s(j) 
3=0 

\ V .J=° V J=° 

(5.61) 

7 
Kullback-Leibler Divergence: 

<IKL{S) 

II 

]TVeO') -log 
j = 0 

(5.62) 

Figure 5.25 plots the inter-key distances between the shifted key profile templates given 
above with respect to C Major; the distances are shown both in a line plot (bottom left) 
and within the circle of fifths (right). The Euclidean distance has been used to compute 
these diagrams; therefore it is only logical that the input key profiles have been normed 
to a vector length of 1 (as opposed to a sum of 1). The distances basically behave as 
anticipated: the orthogonal template has the same high distance to all other keys while for 
the smoothed orthogonal template the distance increases to a maximum at the tritone — 
this would be musically reasonable were it not for the fact that the keys with root notes 
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Figure 5.25 Key profile vectors (top left) and the resulting inter-key distances (Major) to C Major 
(bottom left and right) 

surrounding the tritone are the most closely related but have the same maximum distance. 
The remaining profiles basically show all the tendency of greater distances for keys more 
distant according to the circle of fifths. This is demonstrated by the cardioid shape of these 
distances in the polar diagram. It should be pointed out that the graph only visualizes the 
distances for keys in major mode and that none of the templates but the probe tone ratings 
and the extracted key profiles are able to separate between major mode and minor mode 
keys (although the model based on the circle of fifths can be adapted to a 3D model). 

Theoretically, these inter-key distance measures are systematically wrong as the pitch 
chroma is a distribution and no vector. However, vector distances have been used and 
appear to work reasonably well in the absence of more fitting distance measures. 

It is possible to smooth the pitch chroma to avoid maximum distances for nearby pitches 
[170] which in the case of tonality perception is probably most effective if the pitch chroma 
is reordered in a way that related keys have similar pitch chroma indices as described in 
Sect. 5.5.1.2. 

There are other more complex mathematical models for estimating a distance between 
two keys or pitch class distributions; one example is Chew's spiral array model [171, 
172]. Another model targeted specifically at automatic tonalness detection is the multi-
dimensional tonal centroid proposed by Harte et al. [165] for which the pitch chroma is 
converted into a six-dimensional representation called tonal centroid based on the so-called 
harmonic network or Tonnetz- If enharmonic equivalence can be assumed, the Tonnetz can 
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be transformed into three two-dimensional planes representing the circle of fifths, major 
thirds, and minor thirds. Another model is Gatzsche's circular pitch space [ 173]. 

5.5.2.3 Typical Key Detection Errors 

The most frequent error of automatic key detection systems is — unsurprisingly — the 
confusion with closely related keys, namely the keys with a dominant and a subdominant 
relationship as well as the parallel key. Another typical error surfacing mainly with popular 
music is the confusion of major modes with minor modes and vice versa while correctly 
estimating the root note. 

When detecting the key of pieces with modulations, i.e., of pieces with a changing key, 
analyzing only small sections at the start and end of the piece of music will improve results 
as it is more than common that the piece will start and end in the same (main) key [153, 
166, 174]. 

5.6 Chord Recognition 

Similar to key detection systems, the automatic recognition of chords utilizes the pitch 
chroma, with the difference that the pitch chroma is extracted from a shorter segment in 
the piece of music as the focus is on the local tonal context. Most modern systems extract 
one pitch chroma for the period between each pair of neighboring beats. 

The pitch chroma is commonly mapped to a chord probability vector; the chord estima-
tion itself is often based on heuristic or statistical models for the progression of chords over 
time. The transformation of the pitch chroma into the chord space is in the simplest case 
done with a linear transformation by the chord transformation matrix Γ. Since the pitch 
chroma has the dimensions 12 x 1, the transformation matrix would be of dimension T x 12 
with T being the number of chord templates. For example, the number of chord templates 
will be T = 24 if only all major and minor triads are allowed. The transformation can be 
formulated as 

xp(n) = Γ ■ v(n) (5.63) 

and can also be interpreted as the correlation between pitch chroma and each template 
(each row). 

The resulting chord vector ψ(η) then has the dimension T x 1 and is a measure of the 
salience or likelihood of a specific chord given the pitch chroma u{n). 

Each row of the transformation matrix represents one chord template; the simplest tem-
plate would be to weight each pitch which is part of the chord by 1 and the remaining 
pitches with 0. Each row could be normalized to the sum of all entries in this row in order 
to compute the arithmetic mean. In this case, the template for a C Major triad would be 
[1/3,0.0,0, V3,0:0,1/3, 0,0,0]. 

Other transformations than a linear transformation are possible; the matrix multiplica-
tion (which can be seen as the calculation of the arithmetic mean of the result of multiplying 
each chord template with the pitch chroma): 

11 

■0(O,n) = ^ r ( O , j ) - i / ( j , n ) (5.64) 

could, for example, be replaced by computing the geometric mean 
11 

!/>G(0, n) = Y[ u{j, n) r ( 0 ' j ) . (5.65) 
.i=o 
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It is also possible to use each row of the matrix directly as a template and compute a 
distance measure between extracted pitch chroma and the template. 

Simply calculating the instantaneous probability of a chord while neglecting the likeli-
hood of certain chord progressions would mean to ignore typical and well-known musical 
"standards" and to dismiss valuable information allowing us to improve the algorithm's 
reliability and robustness. Thus, nearly every system for automatic chord detection utilizes 
a model for chord progressions. This model is either analytically derived or trained from 
a set of data. There are three basic properties that determine the musicological validity of 
the model:4 

■ Key Dependence: a specific chord will have different preferred progressions depen-
dent on the tonal context. Let us consider a typical cadence progression with the 
chords on the scale degrees I ->■ IV —>■ V —> I. In the key A Major (A —> 
D —► E —» A) this would imply that the dominant's (E Major) preferred transition 
would usually be to the tonic (A Major). However, were we in the key B Major, 
E Major's harmonic function would be the subdominant with a relatively high like-
lihood of the following chord being jFjj Major (which would not even be part of the 
key A Major). Thus, chord progression models (theoretically) have to use the key 
of the piece of music. 

■ Model Order, musical context spans usually a larger area than just the neighboring 
chords. Therefore, the likelihood of a specific chord may depend not only on the 
directly preceding chord but on several preceding chords and possibly on some fol-
lowing chords. 

■ Style Dependence: different musical styles are based on different rule sets and differ-
ent musical expectations. The transition probabilities between different chords will 
depend on the style of the piece of music being analyzed. 

A typical approach to model the transition probability between chords is to use a Hidden 
Markov Model (HMM). The states of the HMM represent the possible chords through the 
(possibly transformed) pitch chromas. The observation vectors can be either set a priori by 
applying "musical" knowledge or can be trained from a training data set. Examples for a 
priori settings are the simple chord template mentioned above [164] or the same templates 
weighted to take into account the influence of harmonics [161]. 

A very simple (and key independent) model for the chord progression likelihood is to 
use a circle of fifths [164] with the model errors mentioned above. A related approach is 
to utilize the correlation between Krumhansl's key profiles as chord distances [161]. 

The training data set can either be annotated audio [164], MIDI-synthesized audio [175], 
or a symbolic score format [161]. 

An example for a system acknowledging the key dependence has been published by Lee 
and Slaney by using one HMM for each of the 24 keys [176]. 

4It should be noted that these properties do not necessarily directly reflect on the algorithm's accuracy. 



CHAPTER 6 

TEMPORAL ANALYSIS 

The temporal aspects of music signals such as the tempo and the rhythm are important mu-
sical properties. A fundamental building block of these aspects is the onset: the beginning 
of a musical sound event such as a tone or the stroke on a percussive instrument. The start 
time of an event is usually considered to be more important than the time of the end of 
that event, as listeners apparently perceive musical events more in terms of onset-to-onset 
intervals [177]. 

6.1 Human Perception of Temporal Events 

During the process of human perception, the audio stream will be segmented into a series 
of events; speaking of segmentation is a simplification because musical meaning and even 
rhythm can be conveyed by audio streams with no such clear division into distinct events 
[178]. However, this simplification can be assumed to be sufficiently valid in the context of 
western music for the majority of possible input signals — other incarnations of temporal 
information will be ignored for the sake of simplicity. 

6.1.1 Onsets 

As stated above, an onset is the start of a (musical) sound event. The term onset is fre-
quently used as a synonym to onset time, but it should be more correct to state that its time 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 119 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 
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1—■ r 
attack time 

0 0.02 0.04 0.06 0.08 0.1 

Figure 6.1 Visualization of an envelope and attack time and one possible location for an 
approximation of the perceptual onset time 

position (i.e., the onset time) is one — most definitely the main — property of the onset 
while it can have other properties such as its strength. 

In reality, the start of a musical sound usually is not an exact point in time, but a time 
span, the attack time or rise time. It is the time from the first instrument-induced oscillation 
until a maximum amplitude is reached. An example of an attack phase is shown in Fig. 6.1. 

Sometimes the attack time is differentiated from the initial transient time which ends 
when the note reaches its quasi-periodic state. Obviously this differentiation works only for 
tonal events. The attack time can vary significantly between different musical instruments 
or groups of instruments. It ranges from about 5 ms for some percussive instruments to up 
to 200 ms for woodwind instruments (flute) under certain conditions [46J. 

The exact usage of the terms onset, attack, and transient is sometimes inconsistent and 
confusing. To give an example of a different naming convention than the one used here, 
Bello et al. propose to use the terms attack for our attack time, transient as a description of 
the initial phase of a musical event in which "the signal evolves quickly in some nontrivial 
or relatively unpredictable way" (the period covered by our attack time), and onset as a 
single instant chosen to mark the temporally extended transient (our onset time) [1791. 

Repp pointed out that three definitions of onset times can generally be distinguished 
[180]: 

1. Note Onset Time (NOT): the time when the instrument is triggered to make a sound. In 
the MIDI domain, the NOT is exactly the time of the Note-On command. Depending 
on the instrument or sample used for sound generation, this is not necessarily the time 
when the signal becomes detectable or audible. 

2. Acoustic Onset Time (AOT): the first time when a signal or an acoustic event is theo-
retically measurable. Sometimes the AOT is called physical onset time. 

3. Perceptual Onset Time (POT): the first time when the event can be perceived by the 
listener. The POT might also be distinguished from the Perceptual Attack Time (PAT) 
which is the instant of time that is relevant for the perception of rhythmic patterns 
[181]. While the PAT might occur later than the POT, they will be equal in many 
cases. For the sake of simplicity, there will be no distinction of POT and PAT in the 
following. 
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The POT can never occur before the AOT, which in turn never occurs before the NOT. 
Due to the "perceptual" definition of the POT, the exact location cannot be determined 
acoustically but has to be measured in a listening test. Both Gordon and Zwicker found 
strong location drifts of the PAT depending on the waveform properties during the rise time 
[47, 181]. There are indications of the POT to be correlated with the envelope slope [181]. 

Given the three definitions above, the following question arises: which of the three onset 
times is on the one hand detectable in the signal and on the other hand of the utmost interest 
in automatic onset detection and any rhythm-related task? Due to the symbolic nature of 
the NOT, it simply cannot be detected from the audio signal. The choice between AOT and 
POT might be application-dependent; assuming that musicians adapt their timing to their 
sound perception and that most ACA systems try to analyze the perceptible audio content, 
the POT is most likely the point in time desired as result. This reflection, however, is rather 
academic since in reality the accuracy of automatic onset detection systems is usually too 
poor to differentiate between the different onset times for all but a small class of signal 
types. The algorithm designer will probably strive to improve the detection performance 
of an onset detection system as opposed to its accuracy. 

The human ability to locate onset times and to distinguish closely spaced onsets is of 
specific interest when estimating the required time accuracy of an onset detection system 
since most systems aim to be at least as accurate as the human perception. 

Hirsh found that temporal discrimination of two onsets is possible for humans if the 
onset time difference is as little as 2 ms [182]. However, in order to determine the order 
of the stimuli, their distance had to be about 20 ms. The measurements were done with 
synthetic signals with short rise times. 

Gordon reported a standard deviation of 12 ms for the accuracy of onset times specified 
by test listeners, using 16 real-world monophonic sounds of different instruments played 
in an infinitely long loop pattern with Inter-Onset Intervals (IOIs) of 600 ms [181]. Friberg 
and Sundberg undertook a similar experiment using tone stimuli [183], For IOIs smaller 
than 240 ms, they reported a just noticeable difference of about 10 ms, and increasing val-
ues for larger IOIs. 

Repp reported for the manual annotation of onset times by one listener in the context 
of piano recordings a mean absolute measurement error of about 4.3 ms and a maximum 
error of about 35 ms [184]. In a recent investigation, Leveau et al. had three test subjects 
annotating the onset times in audio files of various genres and instrumentations [185]. The 
results showed a mean absolute measurement error over all test data of about 10ms; for 
one piece of classical music, the mean absolute measurement error nearly reached 30 ms. 

Rasch evaluated the onset time differences between instruments in three ensemble per-
formances [186]. He found synchronization deviations in a range between 30 and 50 ms 
between the (string and woodwind) instruments, while the mean onset time differences 
were in the range of ±6 ms. However, since the measurement accuracy has not been eval-
uated in this case, it is unknown how much of the actual time differences can be attributed 
to the performance itself. 

For piano duet performance, Shaffer reported standard deviations within the voices be-
tween 14 and 38 ms [187]. 

It may be concluded that the accuracy of human onset perception depends on the test 
data and that deviations evoked by motoric abilities seem to be in the same range. The 
presented results imply that an automatic onset detection system aiming at human detection 
accuracy (or being evaluated with test data annotated by humans) will have a minimum 
mean absolute error in the range of 5-10 ms; the error can be expected to be as high as 10 
times more for specific instruments and pitches with long rise times. A real-world aspect 
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with negative impact on the onset detection "accuracy" is the occurrence of several quasi-
simultaneous onsets in polyphonic music. In this case the deviation between the individual 
voices will virtually decrease the system's accuracy, although it may be argued that in this 
case there is no single reference onset. 

6.1.2 Tempo and Meter 

The tempo is the rate at which perceived pulses with equal duration units occur at a moder-
ate and natural rate [188]. This perceived tempo is called the tactus [189] and is sometimes 
simply referred to as the foot tapping rate [190]. A typical natural rate would be located 
around 100 Beats per Minute (BPM) [191]. 

For segments of music with constant tempo, the tempo T in BPM can be computed 
using the length of the segment Ats in seconds and the number of beats B in the segment: 

S = ^ [ B P M ] . (6.D 

In the case of a dynamic tempo, the local tempo can be extracted by identifying the event 
time of every beat ib and computing the distance between two neighboring beats with 
indices j and j + 1: 

τ'-Μ> - . . . o + T - w [BPM1- ,6-2) 

Deriving an overall tempo becomes increasingly difficult when the tempo is not constant; 
in this case the mean tempo given in Eq. (6.1) does not necessarily match the perceived 
tempo a listener would indicate. This led Gabrielsson to distinguishing between the mean 
tempo and the main tempo, the latter being a measure ignoring slow beginnings or final 
ritardandi [ 192]. Repp found good correlation of the perceived tempo with the mean value 
of a logarithmic IOI distribution [193]. Goebl proposed a mode tempo which is computed 
by sweeping a window over the histogram of Inter-Beat Intervals (IBIs) and selecting the 
maximum position as mode tempo [194]. 

McKinney and Moelants complicated matters further by arguing that a single tempo 
does not sufficiently describe the (listener) group response when presented with a piece of 
music. They propose a representation of the overall tempo with two BPM values instead 
of a single one [ 195]. 

The meter is a regular alternation of strong and weak musical elements which are 
grouped with a length of normally three to seven beats or a length of around 5 s. 

6.1.3 Rhythm 

The perception of rhythm can — similar to the meter — be described by its grouping 
properties. The grouping properties allow a hierarchical segmentation into smaller subse-
quences forming different grouping levels. The length of the groups can range from the 
length of a few notes up to whole parts of the work defining musical form [189].' Groups 
of a length between one beat and the length of the meter are most commonly referred to 
as rhythm. The rhythm is then defined by its accents and time intervals; if the durations 
of subsequent intervals relate to simple integer ratios, then the group usually has a closer 
binding than otherwise [196]. 

However, we will use the term rhythm only for groups with a length of up to several beats. 
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The various hierarchical levels of temporal grouping are an important property of many 
(western) pieces of music. Humans perceive pulses at different levels and with different 
tempi; at all levels the grouping of strong and weaker events occurs. The basic building 
block on the lowest (and shortest level is commonly referred to as tatum [197], although 
other terms such as atomic beat have been used [198]. The tatum specifies the lowest period 
length or the period of the regular pulse train with the highest frequency represented in the 
music. Every rhythm is built of the tatums which can be interpreted as a rhythmic grid or 
a time quantization. The length of the highest level grouping depends on the definition of 
grouping and could go up to the level defining musical form such as the length of musical 
phrases or even longer structures which form groups. 

6.1.4 Timing 

The timing of individual notes or temporal events in a music performance does not neces-
sarily exactly reflect the structural properties of the rhythm or meter but shows systematic 
temporal deviations from the underlying rhythmic structure [45]. A detailed overview of 
expressive timing will be given in Chap. 10. 

6.2 Representation of Temporal Events in Music 

The representation of musical (temporal) events is closely related to the perception of such 
events for both terms and the musical score. 

6.2.1 Tempo and Time Signature 

The overall tempo of a piece of music is usually chosen by the performing artists even if 
the composer indicates a preferred tempo. Tempo instructions for the performers became 
more and more explicit over the centuries. While many pieces from the Baroque period 
do not contain instructions due to the composer's assumption that the tempo was specified 
by performance conventions, it became more and more common in later epochs to indicate 
the tempo with Italian terms such as Largo (very slow), Adagio (slow), Andante (walk-
ing pace), Moderate (moderately), Allegro (fast), and Presto (very fast). During the last 
century it became more common to make specific tempo indications in BPM. 

The local tempo varies throughout a piece of music for nearly all genres. The possi-
bilities to include instructions for such variations in the score are limited besides adding 
tempo indicators; examples of tempo instructions for sliding tempo changes are ritardando 
(slowing down) and accelerando (speeding up). 

The bar (also called a measure) is the score equivalent of the (perceptual) meter. A 
score marks the beginning of each bar by a vertical line. The first beat of a bar usually has 
the highest (perceptual) weight and is referred to as downbeat. 

The time signature is a way to convey information on the properties of a bar, namely 
the number of beats grouped together in one bar as well as the note value constituting one 
beat. The time signatures in Fig. 6.2 group four, three, two, and two beats, respectively. 
The fourth example differs from the first three in grouping half notes instead of quarter 
notes. The denominator of the time signature thus indicates the note value of one beat 
while its numerator indicates the number of beats per bar.2 

There are exceptions from this rule such as a time signature ^8 with a beat length of three eighth notes. 
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Figure 6.2 Frequently used time signatures 
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Figure 6.3 Note values (top) and corresponding rest values (bottom) with decreasing length in 
musical score notation 

6.2.2 Note Value 

The note value defines the relative length of a note with respect to time signature and 
tempo. Notational convention requires that the sum of note values and rest values per bar 
(except a few special cases) must result in the numerator of the time signature. Thus the 
absolute onset time of each note is specified by the bar index and the note's position in the 
bar, given a specific tempo. 

The offset time (also the note off time) is determined by the note's onset time and its 
note value in the score but is not necessarily as clearly defined in a real-world performance. 
Sometimes a note value is shortened and a rest is appended to give the performing artists 
indications of the preferred articulation. In general, however, it is not unusual to place 
the responsibility for such articulation decisions on the performers rather than the musical 
score, but this depends also on epoch, style, and composer. 

Figure 6.3 shows the most common note values (top) starting from a whole note and 
decreasing the value down to two sixty-fourth notes and the corresponding rests (bottom). 

6.3 Onset Detection 

Segmenting the audio stream into separate musical events can be an important processing 
step in applications such as tempo detection or the automatic transcription of music. 

The flowchart of a typical onset detection system (also called onset tracking system) is 
shown in Fig. 6.4. First, a novelty function is computed extracting the amount of "new" 
information in the audio signal for each analysis block. The second processing step consists 
of identifying the locations of the significant maxima which can then be regarded as onset 
times. This second processing step is usually referred to as peak picking. 

Overview articles for different approaches to detecting onsets have been published by 
Bello et al. and Dixon [179, 199]. 
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Figure 6.4 General flowchart of an onset detection system 

6.3.1 Novelty Function 

An important property of the beginning of musical sound events is that "something new 
happens." Thus, the first step toward automatic onset detection is the computation of a 
novelty function which indicates the amount of audio signal changes over time [200]. Other 
names of this function are detection function [179] ox difference function [201]. 

The first step in the computation of the novelty function is usually the calculation of 
the difference between current and preceding feature values. The result is then smoothed 
and negative values are discarded by applying HWR. The latter processing step is usually 
helpful for onset detection as an (amplitude or energy) increase might be expected at onset 
times while a decrease should make an onset less likely. 

In one of the first publications on onset detection in (percussive) music signals, Schloss 
presented an algorithm that makes direct use of the audio signal's envelope slope, extracted 
in the time domain [202]. He extracts the envelope of the audio signal by computing the 
maximum of the magnitude of the signal within a block of samples and recommends to 
adjust the block length to the length of the period of the lowest frequency present. The 
envelope slope is then computed by using linear regression over several points of the peak 
amplitude. 

As pointed out in Chap. 4, there exist different possibilities to extract the envelope of a 
signal, including taking the block's maximum amplitude and low-pass filtering either the 
signal's magnitude or its RMS. This kind of envelope analysis is nowadays usually applied 
to specific frequency subbands as opposed to the time domain signal. 

Most of the concurrent systems use STFT-based techniques for computing the novelty 
function, computed from the differences between subsequent (overlapping) STFT blocks. 
This can either be done with each individual spectral bin or with multiple bins grouped 
into frequency bands. The advantage of computing the novelty function in the frequency 
domain is that the onset detection is not only based on amplitude and envelope differences 
but might also take into account spectral differences such as a pitch change. The disadvan-
tage of the frequency domain computation is the comparably poor time resolution which 
affects the algorithm's detection accuracy. 

The number of frequency bands of onset detection systems varies. Scheirer uses a 
filterbank of 6 bands basically covering a one-octave range [203]. Klapuri uses 21 non-
overlapping bands with their band width and mid-frequency inspired by Zwicker's critical 
bands [204]. Duxbury uses 5 bands up to 22 kHz with constant Q. The individual results 
per subband are either combined into one overall novelty function or they are processed 
per frequency band to be combined only for the final result. 

While spectral domain onset detection systems differ in the number of frequency bands 
they analyze, their main difference is the distance measure d(n) between consecutive 
STFTs. 
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Laroche used a distance similar to the spectral flux with an additional square root func-
tion to increase lower signal amplitudes [205]: 

fc(/m»x) 

dur(rt) = Σ V\M^n)\ - y/\X{k,n-l)\, 
k=k(fmi„) 

Duxbury et al. proposed the distance between complex STFT bins [206]: 

IC/2-1 

ddux(n)= Σ \X{k,n)-X{k,n-l)\, 
fc=o 

while Hainsworth and Macleod calculated a logarithmic distance [201]: 
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It is also possible to compute the distance with the cosine distance between two STFT 
frames as suggested by Foote [200]: 

df„„(n) = 1 
Σ 1\X(k,n)\-\X(k,n-l) 
k=a 
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Bello et al. pointed out that phase relations may be used for the detection of novelty in an 
audio stream as well [207]. Here, the principles of instantaneous frequency computation 
(see Sect. 2.2.3.1) are applied and the difference of the unwrapped phases Φ is used: 

dy>ei(k,n) = princarg Φχ(Α,η) - 2Φχ(k,n- l) + &x(k,n - 2 ) (6.7) 

Goto and Muraoka proposed a distance which compensates for slow frequency variation 
over time [208]. They identify all bin indices k with 

(a) higher power than the maximum of the four closest preceding bins: 

A = X(k,n-\)2, 

B = X(k-l,n-\)'\ 

C = X(fc + l , n - l ) 2 . 

D = X{k,n-2)2, 

Emax{k,n) = max{A;B,C,D), (6.8) 

and 

(b) the same condition fulfilled for the maximum power of the three closest neighboring 
bins: 

EKnH = max (X{k,n+l)2, X(A: - l , n+ l ) 2 , X{k+l,n+V, (6.9) 
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The distance is then computed from the maximum of the current and following power value 
Et(k,n) = max (X(k,n)2,X{k,n+l)2) by 

, λ U(*,»)-iWM), *(*(*'»)2>W*,n))A 
d&0t{k,n) = l {Ekjn+1> Emax(k,n)) , (6.10) 

0, otherwise 

K/2-1 

dSot(n)= J2 d(k,n). (6.11) 
fc=0 

This distance strongly depends on the ratio of STFT size and sample rate as well as the 
block overlap ratio. 

Röbel proposed a transient detection that utilizes the COG of the instantaneous energy 
[209]. He calculates this COG per arbitrary frequency band with 

?-^^\Χ(ω,Ιη\2άω 
icg(im) = ^^rh · (6.12) 

J\X(u>,tm)\2<L· 

The derivation of time reassignment is closely related to frequency reassignment and is a 
way of virtually improving the time resolution. 

Zhou and Reiss presented an onset detector utilizing a filterbank of first-order complex 
resonators with an overall number of 960 frequency bands and 10 filters covering the range 
of a semi-tone, respectively [210]. They distinguish between hard and soft onsets and use 
the half-wave rectified energy difference per band for the detection of hard onsets and a 
pitch-based detection for so-called soft onsets by detecting steady-state tonal components 
and locating the corresponding onset position by searching for a salient energy increase. 

6.3.2 Peak Picking 

Although some systems for the automatic extraction of tempo and rhythm features utilize 
the extracted novelty function directly, other systems use it only as an intermediate result 
from which a series of onset times is derived. This is done by peak picking the novelty 
function. The'final tempo and rhythm features are then derived from this series of onsets. 

A flawless novelty function would indicate an onset at each local maximum. In reality, 
however, using the locations of local maxima directly as onset times will cause a large 
number of falsely detected onsets [False Positives (FPs)]. To suppress peaks of no interest, 
a threshold G is applied to the novelty function and only peaks above this threshold are 
considered as onset position candidates. 

In the simplest case, the threshold is a fixed threshold: 

Gd,c = A1. (6.13) 

An alternative to this fixed threshold is using a signal-adaptive threshold. This adaptive 
threshold could be computed from the smoothed version of the novelty function. A typical 
smoothing filter is the MA filter: 

o - i 
Gd,ma = \2+J2b(j)-d(i-j) (6.14) 

3=0 
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Figure 6.5 Audio signal and extracted envelope (top) and novelty function with exemplary 
thresholds for the peak picking process 

with b(j) representing a user-defined window function. The weight λ·2 shifts the threshold 
for adjusting the algorithm's sensitivity. Alternatively, a median filter may replace the 
MA filter; its output Qd{0.^) is an estimate of the median in the block of an appropriate 
length /C: 

Grf,me = A2 + Qd(0.5). (6.15) 

Figure 6.5 exemplifies the process of peak picking by displaying a simple amplitude-based 
novelty function and two thresholds (static and adaptive) for the detection of local maxima. 
The input signal is a monophonic saxophone recording. 

There are other ways of increasing the robustness of the onset detection system. Ex-
amples of additional criteria are the usage of the "amplitude" distance between the local 
maximum and the preceding local minimum as an indicator of onset strength and the ex-
traction of the novelty function's slope before the local maximum as a cue for the likelihood 
of an onset. 

An additional post-processing step is applied occasionally: the detected onsets may 
have very close proximity in time, and depending on the task at hand it might be beneficial 
to combine two or more closely neighbored onsets into one. The exact process of combin-
ing several onsets is, however, not as straightforward as one could wish. Possibilities are to 
choose the earliest onset, to choose the onset with the highest weight, or to compute some 
kind of average as the resulting (combined) onset time. 

The final result of the onset detection system is a series of estimated onset times ta(j), 
possibly including an additional weight or intensity information as additional property. 
The markers in Fig. 6.5 indicate the estimated onset positions. 

6.3.3 Evaluation 

The evaluation of onset detection systems is a good example for the evaluation of ACA sys-
tems in general. Early publications on onset detection described their evaluation method-
ology and evaluation metrics as far less elaborate than the algorithm itself. To give an 
example, the number of correct detections was commonly reported with only a fuzzy de-
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scription of what the definition of a correct detection actually is. The lack of information 
on both the test procedure and the test signals made it nearly impossible to estimate the 
algorithm's detection performance and to compare the results between different publica-
tions on onset detection. Only during the last decade has the problem of proper evaluation 
moved into the researcher's focus. In the context of the Music Information Retrieval Eval-
uation eXchange (MIREX),3 an annual evaluation campaign for MIR algorithms coupled 
to the International Society for Music Information Retrieval (ISMIR), effort has been made 
in proposing a standardized test environment for audio onset detection systems. 

The main problems in evaluating audio onset detection systems can be summarized as: 

■ Lack of proper definition of the term onset: Frequently it is neither entirely clear 
what the system aims to detect exactly (e.g., AOT vs. POT) nor what the required 
measurement accuracy is. 

■ Lack of an adequate amount of test material: The effort and error-proneness of the 
manual annotation of onset times in real-world signals makes it difficult to produce a 
sufficient amount of ground truth test data. 

■ Lack of standardized and critical test material: Comparison between different algo-
rithms is hard without publicly available training and test databases. 

■ Lack of simple yet meaningful evaluation metrics: The evaluation results have to be 
computed and presented in a way that enables the estimation and comparison of the 
system's accuracy and robustness. 

6.3.3.1 Procedure 

The following parameters may be of interest when evaluating onset detection systems: 

■ detection performance, 

■ detection accuracy, 

■ robustness for noisy and band-limited input signals, and 

■ workload of the algorithm. 

For each of these parameters, the definition of meaningful rating metrics with a predefined 
range is desirable. The type, the properties, and the amount of test signals and ground truth 
has to be specified to make results as comparable as possible. 

Detection Performance 
The detection performance is probably of the highest interest in the evaluation of onset 
detection systems. Obviously it should be a measure of how many onsets were correctly 
detected and how many onsets were incorrectly detected. The extracted onset times have 
to be compared with previously defined reference onset times as given by the ground truth. 
Two possible errors can occur: a False Negative (FN) indicating that no onset is detected 
at the time of a reference onset, and a False Positive (FP) which is an onset that is wrongly 
detected where no reference onset is found. Both of these measurements presume the 
definition of a time tolerance window around the reference onset time in which a detection 

3MIREX Home, http://www.music-ir.org/mirex. Last retrieved on Nov. 25, 2011. 
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Table 6.1 Overview of different descriptions of the number of correct and incorrect detections and 
their relation 

Ref. Positives 

Ref. Negatives 

Σ 

Det. Positives 

O T P 

OFN 

ORP 

Det. Negatives 

O F P 

OTN 

ORN 

Σ 

O D P 

ODN 

is counted as correct; usually, the length of this window is set to 50-100 ms. Similar to the 
definition of FPs and FNs, the True Positives (TPs) are the correctly detected onsets and 
the True Negatives (TNs) are the positions at which correctly no onset has been detected. 
In summary, the detection performance can depend on the following values: 

■ the number of TPs (correctly detected onsets) Οχρ , 

■ the number of FPs (falsely detected onsets) Opp, 

■ the number of FNs (missed onsets) O F N . 

■ the number of onsets in the reference data set O R P , and 

■ the number of detected onsets O D P = O T P + Opp 

Table 6.1 visualizes these numbers and their inter-relationship. It refers to onsets as 
positives and non-onsets as negatives to generalize the table to a two-class problem. 

The internal parameters of the onset detection system should be adjusted for the desired 
"working point" before the evaluation itself can be carried out. The so-called Receiver 
Operating Curve (ROC) is an intuitive way to visualize the trade-off between TPs and 
false detections [211]. In the case of the evaluation of onset detection we would plot on 
one axis the TPs, on the other axis the sum of FPs and FNs. Each different parametrization 
of the algorithm results in exactly one point in the two-dimensional space of the ROC 
plot. The parameterizations of interest are the ones that maximize the TPs and at the same 
time minimize the false detections. The ratio of FPs and FNs can also be of interest for 
algorithm parameterization. If these two errors are considered to be equally bad, then the 
ratio should be near the value 1. 

Several measurements of detection performance have been proposed in the past. Cemgil 
et al. proposed the relation of the total number of detections O D P , the number of FNs O F N , 
and the total number of reference onsets O R P as a measure of detection performance (212]: 

O D P - O F N ., , , . 
<?cemgil,l = -p. · (6.16) 

t^RP 

While this is a simple definition of the detection rate, it does not take into account the 
falsely detected additional onsets, and thus can result in misleading values in the case of 
many FPs. 

Liu et al. proposed a similar value for the detection rate, additionally taking into account 
the number of FPs Opp [213]: 

m a x ( 0 D p , O R P ) - ( O F N + 0 F p ) . , ._, 
9iiu = jp. p.—; · (6.17) 

m a x ( 0 D p , O R p ) 
At least theoretically, the result can be negative; this is not desirable for a detection rate 
measure that should be in the range between 0 and 1. 
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A different reliability measurement (a measurement of relative error) has been proposed 
by Lerch [214] 

Qpp ~ (OFN + O F P ) . , 10. 
: i l e r c h - o R P + (oFN + oFp)· ( 6 · 1 8 ) 

The resulting value has the desired range between 0 and 1. The number of missing detec-
tions has the same weight as the number of false positives. In some contexts it might be 
desirable to weight OFN and O F P by different values when one should have a higher influ-
ence than the other. In these cases, a scaling factor λ in the range of [0; 1] can be introduced 
which weights the sum of missing and falsely detected onsets: λ · OFN + (1 — λ) · OFP-
Then, however, there is the possibility of negative results of Eq. (6.18). 

The established statistical evaluation measures precision P and recall R allow a more 
systematic approach. Precision is the fraction of correctly detected onsets from all detected 
onsets: 

Οχρ O T P 

O T P + Opp 0DP 

and recall is the fraction of correct detections from all reference onsets: 

(6.19) 

Οχρ + OFN ORP 

Precision and recall can be combined into the so-called F-Measure F. Mathematically it 
is the harmonic mean of precision and recall: 

„ 2PR 2 0 T P 2 · O T P 

P + R 2 · O T P + 0 F P + O F N O R P + O D P ' 

Note that for the F-Measure to produce reliable results, the number of positives has to 
roughly equal the number of negatives in the test set. If this is not the case (which may 
very well be true in the case of onset detection) the results will be biased. 

Until now we only evaluated correct versus incorrect detection. In addition, a detection 
performance measurement could also include the time distance between the reference and 
the detected onset time and thus include a measure of detection accuracy (see below). A 
detected onset would be weighted with respect to its proximity to the reference. An intu-
itive way to do so could be to weight the distance AiRjD between reference and detected 
time with a window function w(At). Cemgil et al. proposed such a measure in the con-
text of evaluation of beat tracking systems with a Gaussian window function [compare the 
RBF in Eq. (5.20)] [215]. Adapted to the onset detection evaluation problem the evaluation 
measure would be 

« , 2 - ( 0 R P + O D P ) / 2 ■ ( 6 ' 2 2 ) 

This measurement has again the limitation that it is not able to correctly handle FPs. 

Detection Accuracy 
The detection accuracy evaluates the timing accuracy of the algorithm, as opposed to the 
detection performance which evaluated the number of correct and false detection within 
a relatively large tolerance window. The accuracy can be measured by investigating the 
time difference AiR j D between reference and detected onset times. The distribution of 
the resulting time differences contains the necessary data for timing evaluation; values of 
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interest are the arithmetic mean which indicates the tendency of the system detecting onsets 
systematically too early or too late: 

dmean = ] T ) A i R i D ( j ) , (6.23) 

the absolute mean value indicating the average time distance between detected and refer-
ence onset is 

dab8 = 53|AiR,D(j)l. (6·24) 

the standard deviation or a confidence interval 

σ<ι = . U— V (AiR,D(j) - cUan)2, (6.25) 

V DP^ 
and the absolute maximum value of the deviation 

dmax = max |AiR,D(j) | . (6.26) 

Furthermore, a measure of statistical significance such as the p-value (see, e.g., L216]) can 
be given to attest the reliability of the results. 

Robustness and Workload 
Some target applications require robustness of the algorithm against noisy and distorted 
signals or have specific requirements on the workload of a system. 

The robustness against noise and bandwidth limitations can be carried out using the test 
scenario and metrics described above but with modified test signals. Possible modifica-
tions depend on the target application but could include added noise, down-sampling, and 
encoding with lossy audio encoders or speech encoders. 

The evaluation of the algorithmic workload gives an estimate of the complexity and real-
time capabilities of the system. This might be of particular interest if the algorithm has to 
run on embedded devices or has to process vast amounts of data. The actual investigation 
of the workload is more complex than it might seem at first glance. Even estimating the 
theoretical algorithmic complexity in a number of operations gets complicated as soon as 
specific functions such as trigonometric or exponential functions are used. The measurable 
execution time itself may be influenced by many different conditions, for example: 

■ the hardware: processor clock speed, vectorization (SIMD) functionality, cache size 
as well as memory access speed, 

■ the implementation: optimization of the source code, optimization of the compiler, 
and 

■ the software: operating system efficiency, audio and file IO. 

Thus workload measurements usually give only rough impressions of the algorithms pro-
cessing performance even on comparable hardware. The result of workload measurements 
can be given as the ratio between the required computation time ic and the overall length 
of the tested audio data of the test database t\ by calculating fc/*A with respect to the 
used processor. 
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6.3.3.2 Test Signal Databases 

The test signal database for the evaluation of onset detection performance should prefer-
ably contain real-world signals such as signals in CD quality with the onset times annotated 
per hand as the ground truth. However, as several researchers point out, the manual an-
notation is a tedious and time-consuming task [184, 185]. Therefore, two alternatives for 
the generation of test sequences may be considered: acoustic recordings with a symbolic 
trigger (such as recordings of the Yamaha Disklavier) and audio data synthesized from 
symbolic data. In both cases, the reference onsets are available in the MIDI format, al-
lowing the easy automated extraction of NOTs. Given the range of the typical tolerance 
interval of 50 ms, the difference between NOT and POT can sometimes be neglected. 

The test database should include the following signal types to make the evaluation as 
general as possible: 

■ various genres (pop, rock, symphonic, chamber music, electronic, etc.), 

■ various instrumentations, 

■ different tempi and musical complexity, and 

■ critical signals which are signals with very low detection performance. In the case of 
onset detection these might include noisy signals and signals containing various kinds 
of tremolo and vibrato. 

As mentioned above, databases with manually annotated audio files are difficult to find. 
This is on the one hand due to intellectual property issues, on the other hand due to the 
time-consuming task of annotation. Two examples for publicly available databases are the 
data set published by Leveau4 and the data set published by Glover.5 

6.4 Beat Histogram 

The beat histogram or beat spectrum is a way to visualize some rhythmic properties of the 
signal. Similar to the "normal" magnitude spectrum, the frequency (in this case with the 
unit BPM) is assigned to the abscissa and the magnitude (beat strength) is assigned to the 
ordinate. Peaks in the histogram should therefore correspond to the main tactus and its 
integer multipliers and divisors. The beat histogram can be interpreted as the frequency 
domain representation of the novelty function. There are multiple ways of computing such 
a beat histogram. 

Scheirer used a closely spaced filterbank of comb resonance filters and used the filter's 
output energy as indication of the beat strength [203]. 

Foote and Uchihashi proposed to construct a similarity matrix (compare the distance 
matrix D in Sect. 7.1) from the cosine distance between all pairs of STFTs from the audio 
file and then derive the beat histogram by summing the similarity matrix along its diagonal 
[217]. 

Tzanetakis and Cook split the audio signal into four octave bands and extract the enve-
lope per band by applying four processing steps [60]: 

1. Full-Wave Rectification (FWR) by computing the absolute value, 

4Leveau, Pierre, https://sites.google.com/site/pierreleveau/research. Last retrieved on Nov. 25, 2011. 
5Glover, John, http://www.johnglover.net/audiosoftware.html. Last retrieved on Nov. 25, 2011. 
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Figure 6.6 Beat histogram of a piece of popular music (left) and of a string quartet performance 
(right) 

2. envelope smoothing by low-pass filtering, 

3. down-sampling to reduce the complexity by reducing the sample rate, and 

4. DC removal by subtracting the arithmetic mean. 

An ACF (with harmonic processing as described in Sect. 5.3.4.2) is then computed in order 
to identify (rhythmic) envelope regularities. The beat histogram is construed by taking 
three peaks in the search range and adding their amplitude to the beat histogram. This is 
done for each texture window. 

Figure 6.6 visualizes the beat histogram of an excerpt of popular music in comparison 
with the histogram extracted from a string quartet performance. Note that for this plot 
the beat histogram calculation is based on a very simple novelty function derived in the 
time domain from the signal's magnitude. After computing the ACF, the amplitude of 
each individual lag is mapped into the beat domain as the beat strength (this leads to a high 
resolution at low frequencies and a low resolution at high frequencies). The beat histogram 
computed from the popular music example has clearly defined peaks at multiples of a base 
frequency; such a pattern is not identifiable in the right beat histogram computed from a 
string quartet recording. 

6.4.1 Beat Histogram Features 

Similar to an audio magnitude spectrum, the beat histogram can be represented by (simple 
yet meaningful) features. Widely used is the set of features introduced by Tzanetakis and 
Cook consisting of [60] 

■ the overall sum of the histogram, 

■ the relative amplitude of the highest peak, 

■ the relative amplitude of the second highest peak, 

■ the amplitude ratio of second highest to highest peak, and 

■ the BPM frequencies of the highest and second highest peak. 
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Burred and Lerch evaluated a feature set including statistical features of the beat histogram 
such as its arithmetic mean, standard deviation, kurtosis, skewness, and entropy; they addi-
tionally used a measure for what they called rhythmic regularity. The rhythmic regularity 
is a measure of how much the computed ACF differs from the linear weighting function of 
a block-wise ACF [218]. 

6.5 Detection of Tempo and Beat Phase 

Systems for tempo detection (also referred to as tempo induction or tempo tracking) usually 
compute some kind of novelty function in a first processing step. Regardless of whether 
discrete onset times are picked from the novelty function or the novelty function is used 
directly, it is far from trivial to derive the pulse which would be perceived as tactus since 
the main periodicity is frequently not clearly identifiable. 

The detection of specific beat positions is not necessarily required for detecting the 
tempo itself as the tempo is based on the distance between the beats rather than their 
absolute position. Therefore, a periodicity analysis of the novelty function is sufficient for 
tempo estimation when knowledge of the absolute beat positions is not required. 

Given a tempo, the absolute beat position is — due to the similarity to the relation of 
frequency and phase — referred to as the beat phase. This beat phase is, for example, 
required for the so-called beat matching technique for which two or more pieces of music 
with different musical content (but the same tempo) are synchronized at their beat positions 
to generate a so-called mash-up. Without knowing the exact beat positions it would not be 
possible to mix those pieces in a musically meaningful way. 

The first beat tracking systems avoided the complexity of extracting a novelty function 
and focused exclusively on the beat tracking part; they used onset times from symbolic 
data such as MIDI files as input of their beat tracking system. Thus, they assumed a 
perfect computation of the novelty function and of the onset detection, respectively. Allen 
and Dannenberg used a beam search to consider multiple hypotheses of the beat phase, 
utilizing heuristics to select the most likely hypothesis [219]. Large presented a system 
utilizing an oscillator for generating pulses; the system was able to simultaneously adapt 
its current tempo estimate and beat phase estimate to the onset times [220]. The adaption 
speed is based on the distance between the estimated beat position and the actual onset 
position. 

Goto and Muraoka used multiple agents to estimate tempo and beat phase. Each agent 
has its own hypothesis of the tempo and the beat phase and computes its own reliability 
by measuring the coincidence of the estimated beat positions with the (extracted) onset 
positions [208]. Each agent will have different parameter and initialization settings. The 
agent with the highest reliability is chosen as the one providing the most likely tempo 
and beat phase estimate. The system has been developed for several years; a predecessor 
of the system is described in [221]. Later versions of the system extend the computation 
of the novelty function by detecting changes in the tonal components to get additional 
information on the salience of onsets and estimated beats [222, 223]. 

A system which is not based on using discrete onset times has been presented by 
Scheirer [203]. He computes the envelope in six frequency bands and subjects it to HWR; 
the six output signals are then used as inputs to a filterbank of closely spaced comb reso-
nance filters. A major difference between this approach and most others is that on the one 
hand it yields the strength of all detectable tempi and can therefore be used to calculate a 
beat histogram (see above), but on the other hand the tempo estimate is restricted to the 
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filterbank's resolution. A similar system based on comb resonance filters has also been 
used by Klapuri [224]. 

Dixon's tempo detection system analyzes clusters of all IOIs within a short time win-
dow, quantizes them and uses the IOI histogram to find the best tempo estimate [225]. In 
order to detect the beat phase, multiple competing agents work in parallel with different 
initializations; the evaluation function for choosing the agent with the most likely beat 
phase estimate throughout the piece is a measure of regularity of the IBIs and the salience 
of the chosen onsets [226]. In a related publication he argues that a beat tracking system 
can benefit from more sophisticated information such as a salience measure based on note 
duration (or to be more exact, the IOI), intensity, and pitch [227]. Meudic modified Dixon's 
beat tracking system to work in real-time [228]. 

Similar to Scheirer, Gouyon and Herrera presented a system utilizing a continuous nov-
elty function as opposed to a series of discrete onset times. The overall novelty function is 
derived from a set of various features [229]. The tempo is then found by seeking period-
icities in the ACF of the novelty function. The choice of the most likely tempo candidate 
is computed by using a "harmonic grid"; the ACF values of multiples of the current tempo 
hypothesis are used to estimate its likelihood. A related approach to harmonic processing 
of the ACF can be found in the fundamental frequency detection system of Karjalainen and 
Tolonen as described in Sect. 5.3.4.2. 

Laroche used a spectral flux-based novelty function and computed the correlation func-
tion between a set of quantized template delta pulses for various tempi and beat positions 
in a window with the length of several seconds [205]. The most salient 10 to 15 maxima 
are used as initial tempo candidates. Finally, he applies Dynamic Programming (DP) tech-
niques to find the most likely overall path through all the tempo candidates for all analysis 
windows over the whole audio file [for a related algorithm see the description of Dynamic 
Time Warping (DTW) in Sect. 7.1J. A similar approach has been published by Peeters 
[230]. The main difference to Laroche's approach is that he computes both an ACF and 
an STFT from the novelty function and combines the results of both to estimate the tempo 
candidates. The advantage of this combined representation is increased robustness against 
octave errors, one of the typical problems of periodicity analysis. Furthermore, he adds 
three different meter templates as possible states to the tempo candidates; his DP approach 
utilizes the Viterbi algorithm [231] to find the most likely tempo path through the "audio 
file." The advantage of the latter two approaches is that their DP techniques should enable 
them to deal with sudden changes in tempo and, in the case of Peeters, meter. 

6.6 Detection of Meter and Downbeat 

The relation of meter and downbeat is very similar to the relation of tempo and beat phase. 
Just as the tempo is derived from the distance between two neighboring beats, the meter is 
(usually) the length of a bar while the downbeat marks the beginning of a bar. 

The hierarchical metrical structure of music makes the differentiation of detecting the 
beat and the downbeat basically a question of the hierarchical level to investigate. Now, 
we are just interested in long-term periodicities. The algorithms are therefore quite similar; 
the main differences can be found in the search range and in the computation of the novelty 
function. 

Brown weighted the series of onsets with their IOI (in order to increase the impact of 
long notes) and computed the ACF of this series of weighted onsets to detect the meter 
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[232]. Toiviainen and Eerola used a similar approach and evaluated different weighting 
functions for the IOIs [233]. 

Uhle and Herre derived bar length candidates from integer multiples of a previously 
detected tatum and then computed the CCF of two snippets of the novelty function per 
frequency band to derive a measure of the likelihood of the individual bar length candidates 
[190]. 

Escalona-Espinosa argued that it is not only the onset pattern itself that is of interest for 
the estimation of meter and downbeat but other features should be used for computing the 
novelty function as well [234]. More specifically, he assumed that in the western tradition 
of music (and even more so in the case of popular music) the position of a downbeat 
increases the likelihood of both 

■ a note or harmony change and 

■ the occurrence of a new bass note 

compared to positions between downbeats. Therefore he proposed the computation of 
two novelty functions, one based on the pitch chroma difference and the second on the 
bass energy increase. The time resolution for this computation is signal adaptive: it is the 
previously estimated tatum. Using the tatum has the two advantages of a signal-related 
segmentation and higher computational efficiency of the following processing steps. As 
an alternative to the ACF-based approaches he constructed two matrices which contain the 
(self-) similarity between all pairs of samples of the two novelty functions. The matrices 
are called self-similarity matrices. When averaging the diagonals of each similarity matrix 
the result is a measure of periodicity with respect to the distance from the main diago-
nal. Depending on the similarity (or distance) measure used for computing the similarity 
matrix, this function can be closely related to the ACF. The lag of the main peak within 
a pre-defined search range is then the detected bar length. In combination with a tempo 
estimate the result allows him to derive the time signature of the piece of music. The most 
likely downbeat position is estimated with the extracted bar length by computing the CCF 
of each novelty function with a delta pulse spaced with the bar length period. The lag of 
the CCF's maximum indicates the downbeat position. 



CHAPTER 7 

ALIGNMENT 

Algorithms for the automatic alignment of sequences of different lengths — Dynamic Time 
Warping (DTW) in particular — are part of various algorithms for the analysis of audio 
signals. The following chapter gives an introduction to the DTW algorithm and presents 
the two typical synchronization applications such as audio-to-audio alignment and audio-
to-score alignment. 

7.1 Dynamic Time Warping 

The objective of D7Wis to align or to synchronize two sequences of different length [235]. 
Given two sequences Α(ΠΑ) with % e [0 ;AA - 1] and B(UB) with riß e [0;Λ/Β - 1], 
a distance measure can be computed between all pairs of A(TIA) and Β(ΠΒ), resulting 
in a distance matrix D A B ( « A , « B ) · The specific path from £>AB(0, 0) (the start of both 
sequences) to £>AB(A/A - Ι,Λ/β - 1) (the end of both sequences) which minimizes the 
overall distance is the most likely alignment path (also warping path) between the two 
sequences. Figure 7.1 shows two example sequences, the corresponding distance matrix 
and the resulting alignment path between the two sequences computed with standard DTW 
as described below. 

This alignment path will be referred to as p(np) and nP £ [0;Λ/ρ - 1]; it is a direct 
measure of how one sequence has to be warped (scaled in time) to give the best fit to the 
other sequence. Each path entry is a matrix index in the range ([0;Λ/Ά - 1], [0;Λ/Β — 1])· 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 139 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 
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Figure 7.1 Distance matrix and alignment path for two example sequences; dark entries indicate 
a large distance 

The following conditions apply to the path: 

■ Boundaries: the path has to start at the first index of both sequences and has to end at 
the end of both sequences, meaning that it covers both entire sequences from begin-
ning to end: 

P(0) = [0,0], 

P ( M > - I ) = [ Λ / Ά - Ι , Μ Ϊ 

(7.1) 

(7.2) 

Causality: the path can only move forward through both sequences, meaning that it is 
not allowed to "go back in time": 

η/Λ . , < n-A , , , N , 
Λ Ι ρ ( η Ρ ) — n lp(np + l ) ' 

fl-Ώ \ r i < nB \ / , i i · ulp(np) ~~ Dlp(rip + 1) 

(7.3) 

(7.4) 
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■ Continuity: no index nA or nB can be omitted, meaning that the path is not allowed 
to jump through either sequence: 

nA\ , , ^ < (nA + l ) | , „ (7.5) 

UB\ / , 1 N < ( ^ B + 1)I i \- (7.6) 

These path restrictions result in a theoretical maximum path length of 

M\max = 7VA + Λ/Έ " 2 (7.7) 

when the path runs along the edges of the distance matrix1 and a minimum path length of 

M>,min = Γηαχ(Λ/Ά,ΛΓΒ) (7.8) 

when the path runs on the matrix diagonal for as long as possible. 
In order to find the optimal alignment path the concept of "cost" is used. The cost of 

a path Pj can be computed by accumulating the values of the distance matrix at all path 
points: 

J V p - l 

C A B Ü ' ) = Σ D ( P > P ) ) · <7·9) 
rap=0 

The optimal alignment path is then the path that minimizes the overall cost: 

ΪΑΒ,τηίη = min (CABC?)) , (7.10) 

jopt = argmin^ABC?))· (7.11) 
Vj 

The optimal path can thus be found by computing all possible paths through the matrix D 
and determining the path with the lowest overall cost. 

By means of utilizing glsIdxDP techniques this brute force approach may be discarded 
as the best global solution can be computed more efficiently. As an intermediate result the 
cost matrix CAB is introduced; it has the same dimensions as the distance matrix, but each 
matrix element contains the accumulated overall cost of the best path to this specific matrix 
element. 

The cost matrix can be computed iteratively by 

CAB(riA,nB) = DAB(nA,nB) + min< 

CAB(nA - l , n B - 1) 
CAB(nA-l,nB) . (7.12) 

,CAB(nA,nB - 1) 

Figure 7.2 plots both the distance matrix and the corresponding cost matrix for the example 
sequences from Fig. 7.1. 

The first entry of the cost matrix is initialized with 

C A B ( 0 , 0 ) = £>AB(0 ,0 ) . (7.13) 

The —2 originates in the automatic avoidance of the comer of the distance matrix. 
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Figure 7.2 Distance matrix (left) and corresponding cost matrix (right) 

Due to the alignment path restrictions given above the computation of both the first row 
and the first column of the cost matrix is trivial: 

C A B ( n A , 0 ) = D A B ( j i A , 0 ) + C A B ( n A - l , 0 ) , 

C A B ( 0 , n B ) = D A B ( 0 , n B ) + C A B ( 0 , n B - l ) . 

(7.14) 

(7.15) 

This can also be interpreted as initializing the distance matrix for indices smaller than 0 
with 

C A B ( « - A , - 1 ) = oo, 

C A B ( - 1 , » B ) = oo, 

and applying Eq. (7.12). 
Each cost matrix element contains the minimum cost to reach that element. During the 

calculation of the cost matrix, the indices of the preceding cell that has been selected as the 
minimum cost for each matrix element have to be remembered. The optimal path can then 
be traced back from the current element to the beginning. 

The complete iterative algorithm can thus formally be summarized by 

■ Initialization: 

C A B ( 0 , 0 ) = D A B ( 0 , 0 ) , 

CAB(nA,-i) = oo, 

C A B ( - 1 , ' " B ) = oo. 

(7.16) 

(7.17) 

(7.18) 
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Recursion: 

CAB(nA,nB) 

Δρ(ηΑ,ηΒ) = < 

ΌΑΒ(ηΑ - Ι,ΤΙΒ - 1) 

CAB(nA - l ,n B ) 

,CAB(nA,nB - 1) 

CABCWA - l , n B - 1) 

CAB{nA-l,nB) 

>CAB(nA,nB - 1) 

f [ - l , - l ] if J = 0 

1,0] if J = 1 ■ 

J0 . -1 ] if i = 2 

DAB{nA,nB) +min < 

argmm < 

Termination: 
nA = λίΑ - 1 Λ nB = A B - 1. 

Path backtracking: 

p(nP) = p(np + 1) + Δρ(ρ (η Ρ + 1)), nP = NP - 2,λίΡ - 3, 

(7.19) 

(7.20) 

(7.21) 

(7.22) 

,0. (7.23) 

Note that the distance matrix is frequently be replaced by a similarity matrix; the algo-
rithm will remain the same although the cost matrix (as introduced below) will have to be 
replaced by a likelihood matrix and some algorithmic details will have to be modified in 
other places as well, for instance, replacing the min operation by a max operation. 

7.1.1 Example 

In order to allow a better understanding of the initially rather abstract concept of DTW we 
will present a small example. The (one-dimensional) input sequences are 

A = [1, 2, 3, 0], 

B = [1, 0, 2, 3, 1], 

and we will simply use the magnitude of the difference as the distance measure. The 
distance matrix is then 

DAB = 

2 

3 

1 

0 

2 

and the corresponding cost matrix is 

C A B = 

0 1 

1 2 

2 

4 

4 

3 

4 

1 2 

1 1 

2 3 

(7.24) 

(7.25) 
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During the calculation of the cost matrix, we also memorized the direction of lowest cost 
for each matrix element: 

t \ \ K 

t \ <- < 
t t \ < 

in order to be able to backtrack the optimal path through the distance matrix: 

0 

1 

D AB (7.26) 

7.1.2 Common Variants 

The standard DTW algorithm as described above is frequently modified; the reasons for 
this modification can be either the adaption to specific use cases or the optimization of 
its workload requirements. Several such modifications are described in detail by Müller 
[236]. 

7.1.2.1 Transition Weights 

In order to favor vertical, horizontal, or diagonal path movement, weighting factors can be 
applied to Eq. (7.12) 

{C A B ( ' " A - 1, »-B - 1) + Aa ■ £ Ά Β ( ' Π Α / " Β ) 

C A B ( « A - 1, nB) + λ ν · DAB(nA,nB) ■ (7.27) 

C A B ( » . A , « . B - 1) + At> · - D A B ( « A , « B ) 

In the default DTW approach all these weights had been set to 1. Another typical set of 
weights is 

Ad = 

Av = 

Ah --

= 2 

= 1 

= 1 

to prevent the implicit preference of the diagonal since one diagonal step corresponds to 
one horizontal plus one vertical step. 

An algorithm closely related to DTW is the Viterbi algorithm which finds a path through 
a set of (observed and hidden) states [231 ]. 

7.1.2.2 Different Step Sizes 

Instead of forcing the algorithm to only increment each index by one, one can optionally 
allow larger step sizes or jumps. The arguments of the minimum operation of Eq. (7.12) 
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min < 

could, for example, be replaced by 

{ CAB(nA - l , n B - 1) 

C A B ( n A - 2 , n B - l ) (7.28) 

C A B ( " A - l , n B - 2 ) 

which constrains the slope of the warping path to avoid the path containing many con-
secutive horizontal or vertical steps. This modification will only work if the sequence 
lengths Λ/Ά and λίΒ differ not by more than a factor of 2. Another alternative enforcing the 
alignment of all elements of both sequences is to replace the arguments of the minimum 
operation of Eq. (7.12) by 

CAB(nA - Ι,τΐΒ - 1) 

C A B ("A - 2, TIB - 1) + £>AB(nA - 1, nB) 

CAB{nA-3,nB-l) +DAB(nA-l,nB) + DAB(nA-2,nB) ■ (7.29) 
CAB{nA - 1, nB - 2) + DAB(nA, nB - 1) 

CAB(nA - 1,71B - 3 ) + DAB(nA,nB - 1) + DAB(nA,nB - 2 ) 

7.1.3 Optimizations 

If the two sequences to be aligned are long, the size of the distance matrix increases drasti-
cally as the number of matrix elements is the multiplication of the length of the sequences 
NA ■ λίΒ- This results in both high memory requirements and a large overall number of 
operations. The effects can be alleviated by using different approaches to optimization. 

One simple approach to reduce the amount of memory without changing the (standard 
DTW) algorithm or its results is to replace the cost matrix with two vectors, a row and 
a column vector of cost entries, as the cost of more distant elements is not used by the 
algorithm. 

7.1.3.1 Maximum Time Deviation Constraint 

Under the assumption that the timing of the two sequences to be aligned does not deviate 
more than a certain maximum deviation Tmax, neither the distances nor the cost has to 
be computed for matrix entries outside a band with the width of 2Tmax centered around 
the diagonal from start (0,0) to stop (Λ/Ά —

 IJ-Λ/Β — 1)· This optimization has first been 
proposed by Sakoe and Chiba [235] and is visualized in Fig. 7.3 (left). 

7.1.3.2 Maximum Tempo Deviation Constraint 

If the slope of the alignment path is constrained or, in other words, the tempo difference 
between the two sequences is limited then matrix entries outside of a trapezoid spanned 
by this tempo relationship do not have to be computed. This optimization has first been 
proposed by Itakura [237] and is visualized in Fig. 7.3 (right). 

If start and end points of the two sequences are not necessarily a perfect match, for 
example, in the case of silence frames at the beginning and end of a sequence, this ap-
proach should be combined with the optimization assuming a maximum time deviation 
(see above) to allow horizontal and vertical movement along the matrix edges at start and 
end. Otherwise the path restrictions are too narrow if the sequences do not start and stop at 
exactly the same point. This is a problem of the path shown in Fig. 7.3 (right) at both start 
and end. 
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Tl. A « A 

Figure 7.3 Path restrictions for performance optimizations of DTW: maximum time deviation 
(left) and maximum tempo deviation (right) 

7.1.3.3 Sliding Window 

The DTW algorithm is not a real-time algorithm as it requires the complete sequences for 
processing. It is possible to use DTW in a pseudo-real-time context when the alignment 
path is only computed within a sliding local window [238]. This results in a high algorith-
mic latency. Outside this window the path will not be updated anymore. The number of 
operations depends on the window length and is independent of the sequence length. 

7.1.3.4 Multi-scale Dynamic Time Warping 

Multi-scale DTW is based on the idea of processing the input sequences at different time 
resolution. More specifically, the time resolution of the input sequences can be reduced by 
both, using larger block sizes for computing the distances or low-pass filtering and down-
sampling the existing sequences. The extracted path through this down-sampled distance 
matrix can then be used to define a sliding window to be used for a second matrix with 
finer resolution. This process can be done in two stages [239] or iteratively in multiple 
stages [236, 240]. 

7.2 Audio-to-Audio Alignment 

Audio-to-audio alignment describes the process of retrieving corresponding points in time 
in between two audio signals with the same or a similar content. It requires an analysis of 
the audio files enabling the mapping of points in time in one signal to points in time in the 
other signal. The knowledge of those synchronization points enables a variety of different 
use cases such as 

■ quick browsing for certain parts in recordings in order to easily compare parts audito-
rily [238, 240], 

■ adjusting the timing of one recording to that of a second by means of a dynamic time 
stretching algorithm. This has practical use in a music production environment. The 
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different voices of a homophonic arrangement (e.g., the backing vocals in a pop song) 
can, for instance, be automatically synchronized to the lead voice. The same applies 
for different instruments playing in unison or at least in the same rhythm, 

■ automated synchronization of a (dubbed) studio recording with an original, possibly 
distorted, recording, and 

■ musicological analysis of the timing information contained in the alignment path of 
several performances of the same score in order to compare the tempo and timing to 
a given reference music performance. 

The main difference between various publications on audio-to-audio alignment can be 
found in the features extracted from the audio signal as well as in the subsequent com-
putation of the distance matrix. Differences in calculating the alignment path are mainly 
due to the variants and optimizations of DTW listed above. 

Hu and Dannenberg compute a simple pitch chroma as input feature [241]. The distance 
is the Euclidean distance between all pitch chroma pairs of the two "audio" sequences. 

Turetsky and Ellis use several STFT-based features such as the power and the first order 
difference in time and frequency. They then use the cosine distance as similarity measure 
[239]. 

Dixon and Widmer argue that the main objective of audio-to-audio alignment is the 
synchronization of the onset times and propose to use a spectral flux-based feature sub-
jected to HWR; the feature is computed in semi-tone bands [238]. The distance measure 
is the Euclidean distance. In order to achieve pseudo-real-time alignment, they use a mod-
ified DTW approach that estimates the optimal local path within a sliding window (see 
Sect. 7.1.3.3). 

Müller et al. compute the pitch chroma via the energy outputs of a filterbank. They use 
multi-scale DTW as described in Sect. 7.1.3.4 to efficiently compute the alignment path 
[240]. 

Kirchhoff and Lerch pointed out that the type of features used for audio-to-audio align-
ment depend on the use case; the alignment may be done for signals with either identical 
pitch, envelope, or timbre while onset-related features can be used in any case [242]. They 
evaluated a large number of features from these four categories and did not use a vector 
distance but trained an LDA classifier for two classes (on path vs. not on path) for the 
automatic feature weighting and the distance computation. 

7.2.1 Ground Truth Data for Evaluation 

A set of pairs of audio files with clearly defined synchronization points is required as 
ground truth to evaluate the accuracy of an estimated alignment path. There exist several 
ways of generating a ground truth data set for audio-to-audio alignment systems. Corre-
sponding points in time can be (manually or semi-automatically) annotated, onset times can 
be monitored and stored during a recording of a computer-monitored instrument, or MIDI 
files can be rendered to audio by means of a sample player. As pointed out in Sect. 6.3.3.2 
the manual annotation of points in time is a rather arduous process and thus generally only 
a few points per test file can be labeled. The drawback of using piano-generated data is its 
restriction to solo piano music; furthermore, confining the evaluation to note onsets might 
be sufficient for the case of solo piano music, however, other kinds of music may also 
require the synchronization during the time span in between onsets. The disadvantage of 
using synthesized samples is that their properties might differ from "real-world" signals. 
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Alternatively, it is possible to artificially generate modified pairs of audio signals by 
using a dynamic time stretching algorithm, i.e., an audio processing algorithm able to 
change the tempo without changing the pitch of an audio signal [243J. This allows for high 
accuracy of the data set while allowing to test with a wide range of musical styles and in-
strumentations. In this case the validity of the data set depends (a) on the realistic dynamic 
use of stretch factors and (b) on the audio quality of the stretching engine. Furthermore, 
the test data originates from the same audio signal which may give too positive results. 

7.3 Audio-to-Score Alignment 

Systems for the synchronization of an audio signal with a musical score (frequently in 
MIDI format) are usually categorized with respect to their real-time capabilities. Real-time 
systems are called score following systems, and non-real-time (or offline) implementations 
are referred to as audio-to-score alignment systems. 

Possible applications of such alignment systems (compare [244]) include 

■ linking notation and music performance in applications for musicologists to enable 
working on a symbolic notation while listening to a real performance, 

■ using the alignment cost as a distance measure for finding the best matching document 
in a database (i.e., retrieve an audio signal for a score query or vice versa), 

■ the musicological comparison of different performances, 

■ automatic accompaniment systems, 

■ the construction of a new score describing a selected performance by adding informa-
tion on dynamics, mix information, or lyrics, and 

■ musical tutoring or coaching system for which the timing of a recorded performance 
is compared to a reference performance. 

7.3.1 Real-Time Systems 

Historically, the research on matching a pre-defined score automatically with a music per-
formance goes back to the year 1984. At that time, Dannenberg and Vercoe independently 
presented systems for the automatic (computer-based) accompaniment of a monophonic 
input source in real time [245, 246]. 

In the following years, Dannenberg and Bloch enhanced Dannenberg's system by al-
lowing polyphonic input sources and increasing its robustness against musical ornaments 
and by using multiple agent systems [247, 248]. Vercoe focused on the implementation of 
learning from the real performance to improve the score follower's accuracy [249]. 

Baird et al. proposed a score following system working with MIDI input (for the per-
formance) based on the concept of musical segments as opposed to single musical events; 
the tracking algorithm itself is not described in detail [250, 251]. 

Heijink and Desain et al. presented a score following system that takes into account 
structural information as well. It uses a combination of DP and strict pitch matching be-
tween performance and score [252, 253]. 

While many of previously presented publications focus on the score following part 
rather than audio processing itself, Puckette and Lippe worked on systems with audio-only 
input with monophonic input signals such as clarinet, flute, or vocals [254, 255]. 
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Vantomme proposed a monophonic score following system that uses temporal patterns 
from the performer as its primary information [256]. From a local tempo estimate the next 
event's onset time is predicted and the distance between expected onset time and extracted 
onset time is evaluated. In the case of an "emergency," he falls back to the use of pitch 
information. 

Grubb and Dannenberg presented a system following a monophonic vocal performance. 
It uses the fundamental frequency, spectral features, as well as amplitude changes as fea-
tures for the tracking process [257, 258]. The estimated score position is calculated based 
on a PDF conditioned on a distance computed from the previous score event, from the 
current observation, and from a local tempo estimate. 

Raphael published several approaches to score following implementing probabilistic 
modeling and machine learning approaches incorporating markov models [259-261]. 

Cano et al. presented a real-time score following system for monophonic signals based 
on an HMM [262]. They used the features zero crossing rate, energy, and its derivative plus 
three features computed from the fundamental frequency. 

Orio et al. introduced a score following system for polyphonic music which utilizes a 
two-level HMM modeling each event as a state in one level, and modeling the signal with 
attack, sustain, and rest phase in a lower level [263, 264]. They use a so-called Peak Struc-
ture Distance (PSD) that represents the energy sum of band-pass filter outputs with the 
filters centered around the harmonic series of the pitch of the score event under considera-
tion. 

Cont presented a polyphonic score following system using hierarchical HMMs using 
previously learned pitch templates for multiple fundamental frequency matching [265]. 

7.3.2 Non-Real-Time Systems 

While the publications presented above deal with score following as a real-time applica-
tion, the following publications deal with the closely related topic of non-real-time audio-
to-score alignment. 

The importance of reliable pattern matching methods has already been recognized in 
early publications on score following and alignment; in most cases DP approaches have 
been used [266]; see, for example, Dannenberg's publications on score following men-
tioned above. 

Orio and Schwarz presented an alignment algorithm for polyphonic music based on 
DTW which combined several local distances (similarity measures) [267]. It uses the PSD 
as described above and a delta of PSD (APSD) modeling a kind of onset probability; it 
also uses a silence model for low-energy frames [263]. 

Meron and Hirose proposed a similar approach with several easy-to-compute audio fea-
tures and suggested post-processing of the alignment results to improve the alignment ro-
bustness [268]. 

The system by Arifi et al. attempts to segment the audio signal into (polyphonic) pitches 
and performs DP to align MIDI file to the extracted data [269,270]. The algorithm has been 
tuned for polyphonic piano music. 

Turetsky and Ellis avoided the problems of calculating a spectral similarity measure 
between score and audio by generating an audio file from the (reference) MIDI file and 
aligning the two audio sequences with audio-to-audio alignment [239]. For the alignment 
itself a DP approach is used. 
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Similarly, Dannenberg and Hu generated an audio file from the MIDI file to align 
two audio sequences [241, 271]. They calculate the distance measure based on a 12-
dimensional pitch chroma. The alignment path is then calculated by a DP approach. 

Shalev-Shwartz et al. presented a non-real-time system for audio-to-score alignment 
utilizing DP [272]. Their algorithm features a training stage for the weighting the features 
for the distance measure. They derived a confidence measure from audio and MIDI simi-
larity data and trained a weight vector for these features to optimize the alignment accuracy 
over the training set. The audio feature set contains simple pitch-style features extracted by 
band-pass filtering, derivatives in spectral bands to measure onset probability, and a time 
deviation from the local tempo estimate. 

The alignment system of Müller et al. is also based on DP [273]. It is targeted at piano 
music, but they claim genre independence. For the pitch feature extraction, they used a 
(zero phase) nTterbank with each band-pass' center frequency located at a pitch of the 
equally tempered scale; the filter outputs are used to extract onset times per pitch. 

In summary, the standard approach to audio-to-score alignment consists of three major 
processing steps: first, the audio feature extraction which in most cases approximates a 
pitch-like representation with onset information; timbre and loudness are too performance 
specific to be used for audio-to-score alignment. Second, a similarity or distance measure 
between audio and symbolic (score) features is computed. Finally, the actual alignment 
or path finding algorithm that is either based on DP, DTW, or on HMMs is applied. With 
respect to the distance measure, two distinct approaches can be identified. On the one hand 
the score is transformed into a more audio-like representation, ultimately by directly ren-
dering the MIDI signal into an audio signal; on the other hand the audio signal is converted 
into a more score-like symbolic format, ultimately by transcribing the signal completely. 
A first step toward combining these two approaches has been made by Lerch by computing 
two distance matrices for the two approaches and combining them in a weighted average 
[274]. 



CHAPTER 8 

MUSICAL GENRE, SIMILARITY, AND 
MOOD 

The automatic recognition of the musical genre or the musical style from an audio signal 
is one of the oldest subjects of ACA and can be regarded as one of the key areas leading to 
today's research field MIR. 

The classification into musical genre can in some ways be seen as a special case of 
a more generalized music similarity measure in the sense that the similarity measure in 
musical genre classification is restricted to dimensions which are meaningful for genre. 
The signals are sorted into pre-defined similarity clusters, the musical genres. 

Applications for these technologies can be found mainly in the annotation, sorting, and 
retrieval of (related) audio files from large databases or the Internet. For music similarity 
there are also somewhat more creative use cases such as the automatic generation of play-
lists and the generation of so-called mash-ups, mixes of two or more "compatible" songs. 

This chapter will cover musical genre classification, music similarity measures, mood 
classification as well as instrument recognition. All these systems have in common that 
they try to represent a property (such as the genre) of the audio signal as either a feature 
vector or a (time-) series of feature vectors; these feature vectors are then used either for 
classification or for a distance measure to retrieve the required result. 

8.1 Musical Genre Classification 

The first publications on the automatic recognition of musical style appeared in the 1990s; 
at that time, the focus was mainly on the discrimination of speech and music signals [275-

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 151 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 
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279], although algorithms aiming at classifying a broader range of signals can be found 
during that decade as well [280, 281 ]. In a way, the task of automatic musical genre classi-
fication is a classic machine learning task — suitable features are extracted from the audio 
signal and with these features a classification system is trained and used for the classifica-
tion task. 

As pointed out above, the classification into musical genre can be interpreted as a mea-
sure of music similarity restricted to certain genre-defining dimensions and categorized to 
pre-defined classes, the genres. Similarity can in principle have other dimensions as well 
which are unimportant for the genre definition (see Sect. 8.2.1.1). 

General surveys of approaches to musical genre classification have been published by 
Scaringella et al. and Fu et al. [282, 283]. 

8.1.1 Musical Genre 

At first glance the meaning of the term musical genre appears to be self-explanatory and 
its intuitive definition obvious. On a more thorough investigation, however, it has to be 
concluded that an objective definition of the term is hardly possible. Some of the reasons 
for this have been summarized by Pachet and Cazaly [284] and later by Scaringella et al. 
[282]: 

■ Scope of the genre label: Can an individual song be classified into a genre or does 
the context of album and performing artist influence or overrule the classification 
decision? Or may even different parts of a piece of music have different genres? 

■ Non-agreement of taxonomies: The number and definition of genre labels can strongly 
vary; in the year 2000 Pachet and Cazaly compared genre taxonomies from the three 
web sites Allmusic, Amazon, and MP3.com. The overall number of genres varied 
from 430 (MP3.com) to 531 (Allmusic) to 719 (Amazon), and these labels had only 
70 terms in common. Furthermore, the hierarchy of the taxonomies differed. 

In practical applications of AC A the number of genres has to be more restricted due to 
technical limitations of the classification systems used, but the underlying problems 
of defining a taxonomy remain the same. Figure 8.1 shows two taxonomies defined 
in the context of early musical genre classification systems. 

■ Ill-defined genre labels: There is a semantic confusion between genre labels. They can 
be geographically defined (Indian music), related to an era in music history (baroque), 
refer to technical requirements (barbershop), the instrumentation (symphonic music), 
or usages (Christmas songs). 

• Scalability of genre taxonomies: A specific genre may be split into a variety of sub-
genres (e.g., Hip Hop into Gangsta Rap, etc.). The number of subgenres might evolve 
over the years. 

■ Non-orthogonality of genre categories: One piece of music can possibly be sorted 
into multiple genre categories at the same time. 

Given these observations it becomes clear that deriving a complete and musicologically 
consistent taxonomy is practically impossible [218]. Without a clear definition of the term 
musical genre it also comes as no surprise that the performance of humans annotating 
pieces with genre labels is far from perfect [285, 286]. Automatic systems can be hardly 
expected to outperform humans at this task. 
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8.1.2 Feature Extraction 

From a perceptual point of view, musical genre categorization may be influenced by 

■ temporal characteristics such as the tempo, the time signature, and rhythmic patterns, 

■ dynamic characteristics such as the loudness range, the change of loudness over time, 
accents, 

■ tonal characteristics such as melodic properties, the complexity of harmony (progres-
sion), and prominent pitch classes, 

■ production-related characteristics such as a specific sound quality and volume rela-
tions between instruments, and stereo panning properties, and 

■ instrumentational characteristics such as the number and type of instruments used. 

If for simplicity's sake the latter two are grouped into a timbre category, the resulting cate-
gories are basically tonal, temporal, intensity, and timbre (plus technical) signal properties 
which were introduced in Sect. 1.1. 

The early audio classification systems utilized only a restricted set of features; they 
mainly used the zero crossing rate (see Sect. 3.4.3) and intensity-related features (see 
Chap. 4) [275, 276, 287, 288], although timbre-related spectral features quickly got added 
to the set of features [280, 281, 289]. Pitch-related features which included properties of 
the fundamental frequency variation could also be found in the early speech/music classi-
fication systems [278, 290, 291] but are usually not used for systems targeting polyphonic 
audio input. 

Over the years the number of features grew more and more, eventually covering more 
or less all features presented in Chap. 3 and adding even more instantaneous features [61, 
292]. 

The most common features remained related to intensity and timbre but, although the 
classification results with these features seem to be surprisingly good, other feature di-
mensions got added to the set of features. These additional features include temporal and 
rhythmic features derived from a beat histogram (see Sect. 6.4) [60, 218, 293], simple tonal 
features such as pitch histogram features [157], and stereo panning features [294]. 

8.1.2.1 Texture Window 

The instantaneous features, i.e., the features which do not require a long time window 
such as histogram-based features, are usually processed per texture window as described 
in Sect. 3.5 (low-pass, derivative, subfeatures, etc.). A classification decision can be made 
for each texture window. 

The impact of the texture window length on the classification accuracy has been studied 
by Tzanetakis and Cook [60], Burred and Lerch [218], and Ahrendt et al. [295] with differ-
ent results: Tzanetakis and Cook found that the classification accuracy does not improve 
after a texture window length of 1 s, Burred and Lerch identified a texture window of ap-
proximately 15 s to yield satisfactory results, and Ahrendt et al. found a window length of 
5 s to be sufficient in most cases. No conclusions can be drawn from this result except that 
the optimal texture window size depends strongly either on the features and subfeatures 
used or on the test data set and its categories. 

It is worth noting that humans seem to excel at quickly identifying the musical genre; in 
a data set with 10 genres test subjects were able to identify the genre reliably after listening 
to audio snippets significantly shorter than 1 s [296]. 



MUSICAL GENRE CLASSIFICATION 155 

A hierarchical form of the texture window approach is the default feature extraction 
mode in the software environment Marsyas1 [297]: statistical subfeatures are computed for 
the texture window but are not directly used as classifier input but are in turn subjected to 
the computation of statistical subfeatures (or "sM&subfeatures") in a longer "super"-texture 
window. 

8.1.3 Classification 

From a machine learning point of view it is obvious that any arbitrary classifier can be 
trained on and applied to the previously extracted features. The differences between the 
different approaches can be mainly found in the choice of the classifier type and in the 
genre categorization, mainly through the number of classes but also through the definition 
of a flat or a hierarchical genre tree. The latter has the advantage of branch-specific feature 
weighting at the cost of multiple classification steps [218]. 

Over the years basically all known classification approaches have been evaluated for 
musical genre classification. The most common are 

■ the K-Nearest Neighbor (KNN) classifier which evaluates the number of the closest 
training examples in the feature space, 

■ the Gaussian Mixture Model (GMM) which models the classes' feature distribution 
with multiple Gaussians, 

■ Artificial Neural Networks (ANNs) which are computational models inspired by the 
structure of biological neural networks [127], and finally 

■ Support Vector Machines (SVMs), state-of-the-art classifiers transforming the features 
into a high dimensional space and finding the optimal separating hyperplane between 
the closest data points [298]; SVMs can nowadays be considered a standard tool in 
musical genre classification. 

A typical way of assessing classification accuracy is N-fold cross validation. It is a 
method to ensure that training set and test set are not identical in order to avoid unrealisti-
cally good evaluation results. A standard value for N would be 10, meaning that the data 
is partitioned into 10 subsets. Of these subsets, 9 are used to train the classification system 
and the remaining subset is used for testing. This process is repeated until all 10 subsets 
have been used once for testing, and the overall performance can be estimated by averag-
ing the 10 individual results. Leave-one-out cross validation is an extreme case where N 
equals the number of data observations minus 1. 

Evaluation results of the classification performance strongly depend on the number of 
classes and the diversity, noisiness, and other general properties of the test set. The MIREX 
results indicate a classification accuracy of 50-80% for state-of-the-art systems and 10 
genre categories. It is self-evident that a 2-class system will yield better results than, for 
instance, a system with 20 classes. During the first few years of evaluating musical genre 
classification systems, the aspect of having several songs by the same artist in the same 
class was neglected, leading to an artist-related training and comparably high classification 
performance [299]. 

'Marsyas. http://http://marsyas.info. Last retrieved on Dec. 1, 2011. 



156 MUSICAL GENRE, SIMILARITY, AND MOOD 

8.2 Related Research Fields 

There are fields of MIR that share so many similarities with musical genre classification 
that from a engineer's point of view they can be summarized here rather then being individ-
ual chapters. Besides a general music similarity detection these technologies include mood 
classification, instrument recognition, and artist identification. While there exist perceptual 
and musicological differences between such systems, the technical approaches to solving 
those problems are closely related as they use similar feature sets and similar classifica-
tion systems. In the following, we will focus on instructions to music similarity detection, 
mood classification, and instrument recognition. 

8.2.1 Music Similarity Detection 

As pointed out above, music similarity detection is similar to musical genre classification 
since the genre itself is a grouping of songs with similar acoustic or musical properties. 
From this point of view, music similarity detection differs from musical genre classification 
in the replacement of the classification itself by a distance or similarity measure or by a 
grouping rule. 

Reducing music similarity to genre similarity, however, would be too simplifying since 
genre similarity is a subset of music similarity. This complicates the definition and evalu-
ation of the latter even more than the definition and evaluation of musical genre. Musical 
genre classification can at least have a somewhat verified ground truth generated, for ex-
ample, by manual annotation and categorization of music databases; there can be no such 
database for similarity measures as long as the term music similarity should mean more 
than just genre similarity. This is due to the multi-dimensional and probably associative 
character of music similarity; since the meaning of music similarity largely depends on 
both the individual user and the task at hand, this problem probably cannot be solved sys-
tematically in general. There remains a gap between what music psychologists and empir-
ical musicologists know to be the music similarity and the simplified similarity definitions 
that signal processing and machine learning experts attempt to train. 

8.2.1.1 Music Similarity 

The similarity of two pieces of music can have many facets, and there is research on the 
number and characteristics of individual perceptual dimensions of music similarity. In the 
following, only a few publications will be named to exemplify the different approaches and 
the number of dimensions. Two pieces of music may, for example, be similar with respect 
to rhythm [198, 300], structure [301], surface and texture [302], melody and motives [303, 
304], harmony [305], as well as with respect to performance attributes such as articulation, 
tempo variation, and dynamics [305, 306]. MacAdams et al. categorized these types of 
similarity into three clusters, surface and texture, figural, and structural [307]. There are 
indications that subjective music similarity ratings depend amongst other things on the 
familiarity of the test subject with the music [308]. They might also depend on the listener's 
expert level as well. 

The associative nature of memory cannot be neglected in real-world applications as 
editorial data will also be influencing a human similarity decision. Editorial data refers 
to data that cannot be extracted from the audio signal such as recording date and studio, 
artists and producers who participated in other albums, the label, etc. 
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From an application developer point of view it is also possible to define music similarity 
on a technical level; one may, for instance, simply look for songs with the same tempo or 
related musical key. 

8.2.1.2 Features 

The type and number of features used in music similarity detection is closely related to 
those for musical genre classification. The early systems utilize very small (timbre-related) 
feature sets such as MFCCs [281, 309-311], then other features such as loudness-related 
and rhythm-related features are added [58, 312], and nowadays basically all low-level fea-
tures and mid-level features introduced in the preceding chapters are investigated for music 
similarity detection [313, 314]. 

The representation of similarity features per texture window or recording differs in some 
cases from the statistical subfeatures known from musical genre classification. Logan and 
Salomon use a K-means clustering algorithm to find a good average description of the 
spectral envelope with MFCCs [309], Aucouturier and Pachet model this spectral enve-
lope with GMMs [311], and Pampalk et al. use a histogram containing level classes per 
frequency band [58]. 

8.2.1.3 Similarity Measure 

The pieces of music are represented as (normalized) feature vectors. The simplest approach 
to a similarity measure is to compute a simple vector distance between those feature vec-
tors. Typical pairwise distances would be the Euclidean distance, the Manhattan distance, 
and the cosine distance. 

Instead of computing the pairwise distance it is common to either automatically group 
the vectors or to map them to a lower-dimensional space by means of unsupervised ma-
chine learning algorithms. Two examples of such methods are 

■ K-means clustering: X-means clustering aims at clustering the vectors into K groups 
by minimizing the intra-cluster variance. The standard approach to K-means cluster-
ing has the following algorithmic steps: 

1. Initialization: randomly select K vectors from the data set as initialization. 

2. Update: compute the mean for each cluster. 

3. Assignment: assign each observation to the cluster with the mean of the closest 
cluster. 

4. Iteration: go to step 2 until the clusters converge. 

■ Self-Organizing Map (SOM): A SOM is a form of an ANN which produces a two-
dimensional map as a representation of the (higher dimensional) training samples. In 
its simplest form, it features the following algorithmic steps: 

1. Initialization: specify (randomly or deterministically) a set of nodes spanning a 
net. Each node is represented by a weight vector with the same dimension as 
feature vectors. 

2. Update: pick a training sample (feature vector) and compute the distance to all 
nodes. Update the weight vectors of nodes at a close distance to the training sam-
ple to move them toward the training vector. The amount of increment depends 
on the proximity of the node and the training sample and possibly decreases with 
an increasing number of iterations. 

3. Iteration: go to step 2 until the maximum number of iterations is reached. 
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8.2.2 Mood Classification 

The mood of a piece of music is one of the cues a typical user finds helpful in finding 
and browsing music [315]. This has lead to an increasing amount of research targeted at 
automatically recognizing the emotional characteristics of recordings of music. Terms for 
this field are, for instance, (audio) mood classification and music emotion recognition. 

8.2.2.1 Emotion and Mood in Music 

Understanding the meaning of the terms emotion and mood seems to be essential for the 
successful design of mood classification systems. Unfortunately, there is no established 
understanding of what emotion and mood actually are. This is true not only in the context 
of music but also in general. Kleinginna and Kleinginna, for example, reviewed more than 
a hundred scientific definitions of emotion [316] without being able to identify a consensus. 
There might be better or worse definitions but in the end it is just not possible to prove the 
correctness of an individual definition. 

Weld described the difference between emotion and mood by characterizing emotion as 
temporary and evanescent in contrast to mood which is more permanent and stable [317]; 
mood can also be seen as a diffuse affect state which can emerge without apparent cause 
[318]. However, whether the term emotion or the term mood is more fitting in a musical 
context is unclear. 

Researching the relation of emotion and music exposes some of the typical problems 
in psychological research; one problem is, for example, the process of verbalization which 
confines the description of subtle and varied emotional states to the standardized words 
used to denote them [319]. Meyer also points out that descriptions of emotions are usu-
ally apocryphal and misleading since emotions are named and distinguished largely in 
terms of the external circumstances in which the response takes place; music itself, how-
ever, presents no external circumstances [319]. Scherer criticizes the tendency to assume 
that music evokes basic emotions such as anger, fear, etc. [320]. This led him to propose 
the differentiation between utilitarian emotions, which are the emotions usually studied 
in emotion research (anger, fear, joy, disgust, sadness, shame, guilt, etc.), and aesthetic 
emotions which are not driven by external influences or personal goals but rather by the 
appreciation of the intrinsic qualities of a work of art [321]. Zentner et al. found that neg-
ative emotions such as guilt, shame, disgust, anger, fear, etc. are practically never aroused 
by music [322]. 

Recent research indicates that the "description of musical emotions requires a more 
nuanced affect vocabulary and taxonomy than is provided by current scales and models of 
emotion" [322]. 

It is of importance to distinguish between the emotion aroused in the listener and the 
conveyed emotion perceived by a listener without particularly feeling it [319]. Ratings of 
perceived emotion differ significantly from ratings offelt emotion [322|. 

To complicate matters further, it might be of interest to differentiate between score-
inherent emotions and performance-inherent emotions. To study this, however, seems to 
be only possible in very controlled environments [323-325]; a real-world scenario does not 
allow for such a differentiation as the performance is an integral part of the "music" (see 
also Chap. 10). Also, the differentiation between score and music performance is mainly 
made for non-popular or classical music as opposed to popular music. 

When assessing the mood of a musical piece, the usual approach is to rely either on mod-
els or on label categories. Russel's two-dimensional emotion space is one of the frequently 
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Figure 8.2 Russel's two-dimensional model of mood 

used models [326]. It describes mood by the two dimensions pleasure-misery (horizontal) 
and arousal-sleepiness (vertical) and is displayed in Fig. 8.2. 

A third dimension (for example, dominance or interest) is sometimes added to this 
model, but the usefulness of this dimension is less obvious than with the first two dimen-
sions [327, 328], 

Defining a set of mood categories or clusters is a way to reduce the complexity of 
the model significantly. Based on preceding reasearch on measuring emotional response 
to music, Schubert grouped mood labels into nine clusters as shown in Table 8.1 [329]. 
Deriving mood clusters by statistical analysis from large publicly available meta data col-
lections has been done by Hu and Downie [330]. The resulting five clusters as shown in 
Table 8.2 are also used in the MIREX automatic mood classification task. 

In research on music performance, there is strong evidence of a relation between moods 
and both the tempo and the loudness of the performance, as reported by Juslin [323], 
Kantor [331], Sloboda and Lehmann [332], Schubert [333], and Timmers et al. [334]. The 
mode (major vs. minor) has also been reported to have influence on the mood [335]. 

8.2.2.2 Recognition 

The features and classification algorithms used for mood classification are very similar 
to the ones used in musical genre classification. Some mood-specific features which 
are not common in musical genre classification are articulation-based features estimating 
the smoothness of "note transitions" [336]. Mood classification systems also use tempo 
and rhythm-related features more frequently than systems for musical genre classification 
[337-339]. 

While the features for detecting the mood of music are relatively similar among re-
searchers, the models and mood categories vary. Feng classifies music into the four classes 
happiness, anger, sadness, and fear [337], and Li uses the three dimensions cheerful-
depressing, relaxing-exciting and comforting-disturbing [313]. Frequently used is Russell's 
two-dimensional arousal/valence-model as shown in Fig. 8.2 [326]; sometimes this model 
is simplified to define every quadrant as a category or cluster (contentment, depression, 
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Table 8.2 Mood clusters derived from meta data and used in MIREX 

Cluster 1 

Rowdy 

Rousing 

Confident 

Boisterous 

Passionate 

Cluster 2 

Amiable/Good Natured 

Sweet 

Fun 

Rollicking 

Cheerful 

Cluster 3 

Literate 

Wistful 

Bittersweet 

Autumnal 

Brooding 

Poignant 

Cluster 4 

Witty 

Humorous 

Whimsical 

Wry 

Campy 

Quirky 

Silly 

Cluster 5 

Volatile 

Fiery 

Visceral 

Aggressive 

Tense/Anxious 

Intense 

exuberance, anxious/frantic) [338, 340]. By using continuous values for arousal and va-
lence a categorical taxonomy can be avoided and each piece of music can be represented 
by a point in the two-dimensional space [341, 342]. Other options are to use a fuzzy clas-
sification that assigns probabilities to each class [340] and a multi-class or multi-label 
classification system which assigns a group of labels to a test sample [313, 338, 343]. 

Two additional aspects have also been the subject of research for mood classification; 
first, the possible mood change with the temporal evolution of music leading to the re-
quirement of a non-stationary approach to mood classification [338, 344] and, second, the 
personalization of the recognition systems allowing to model the emotional concepts or 
responses of individuals or groups [339]. 

The evaluation of mood classification systems is — due to the fuzzy and subjective 
nature of mood — even more complicated than it was in the case of musical genre classi-
fication. An overview of different approaches to generating ground truth data is given by 
Kim et al. [345]. 

For the five mood clusters defined for the MIREX evaluation, the mood classification 
accuracy ranges between 40 and 60%. A recent study by Huq et al. presents evidence 
that with the currently used features and classification approaches further improvement of 
classification accuracy is questionable [342]. 

8.2.3 Instrument Recognition 

An algorithm for instrument recognition attempts to identify the musical instruments which 
compose a sound or are present in a musical recording. In contrast to the classification into 
genres or moods it is straightforward to find ground truth data for training and evalua-
tion even if the problem of defining instrument taxonomies cannot be considered to be 
ultimately solved either [346]. 

The two basic forms of instrument recognition can be distinguished by their type of in-
put signal; some systems require a single note with no other pitches or instruments present; 
the signal has to be properly edited to eliminate preceding or succeeding notes or noises. 
Other systems work on a complex mixture of different instruments and estimate the (num-
ber and) type of the instruments present in the mixture. 

Since the latter case is obviously algorithmically harder to handle, it comes as no sur-
prise that most of the early publications on instrument recognition work on monophonic 
snippets of sound containing only one note. Herrera et al. give a good survey on the litera-
ture on monophonic instrument recognition [347]. 
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The restriction to short monophonic input signal snippets allows the definition and us-
age of a new specialized feature set that extends the set of features introduced in Chap. 3. 
More specifically, it allows the system to use features that cannot be used in the context 
of polyphonic music until it will be possible to separate the sources into individual mono-
phonic subsignals. The additional features can be structured in two categories: 

■ Temporal envelope features are features describing the temporal evaluation of the 
sound. Simple examples are the sound's duration, its temporal centroid, and the (log-
arithmic) attack time. 

■ Pitch-based features utilize the fundamental frequency of the sound. Examples in-
clude the energy ratio of even and odd harmonics, the inharmonicity of the harmonics, 
and the onset asynchrony between harmonics. 

Kaminskyj et al. presented one of the first systems for automatic instrument recognition 
[348, 349]. It used a short time RMS and some harmonicity and spectral onset asynchrony 
features; the classification is done with either an ANN or a nearest-neighbor classifier. 
Similar to the systems for music similarity and musical genre classification, cepstral coef-
ficients and MFCCs are frequently used for automatic instrument recognition, for instance, 
by the systems presented by Brown [350] and Marques and Moreno [351]. With time, the 
number of features and the diversity of instrument classes increased, while as classification 
approaches basically the same systems KNN, ANN, GMM, and SVM are used [352-355]. 

The next level in the history of instrument recognition was reached when the input 
signals did not have to be individual notes anymore; while the input still needed to be 
monophonic, it could now contain phrases and whole melodies [356-362]. 

There are only a few systems estimating the instrumentation of polyphonic signals. 
Eggink and Brown presented a system based purely on spectral features with a GMM-
based classification that automatically masks out temporary "unreliable" features [363-
365]. Eisenberg proposed a system for detecting instruments using a so-called harmonic 
peak spectrum by modeling instrument sounds with harmonic sinusoidal peaks [35]. It ex-
tracts the most salient component in the input signal so that it usually detects only the most 
prominent instrument; according to Eisenberg the system is able to detect accompanying 
instruments during pauses of the solo instrument. Heittola et al. attempt to decompose 
the signal into a sum of spectral bases and detect the individual sound sources [366]. The 
classification is done with GMMs on MFCCs. 



CHAPTER 9 

AUDIO FINGERPRINTING 

Fingerprinting aims at identifying audio recordings in a previously generated database. 
More specifically, each recording is represented by a fingerprint, a unique and compact 
digest summarizing the (perceptually) relevant aspects of the recording. The fingerprint 
is also referred to as perceptual hash. A database containing previously extracted fin-
gerprints can be used to identify an unknown recording. In contrast to most of the other 
systems presented in the book, fingerprinting does not attempt to extract musical properties 
from the audio signal but aims at identifying a specific recording as opposed to a specific 
song. Different music performances (or recordings) of the same song should therefore 
have different fingerprints. However, a recording still has to be identified when subjected 
to quality degradation such as perceptual audio coding, added noise, distortions, and other 
typical signal manipulations. 

There are two main areas of application: broadcast monitoring allows rights holders the 
verification of paid royalties and end consumer apps enable the user to either easily identify 
music or to make use of added value services offering extra information for a song such as 
the album cover image or tags and other meta data of interest. Cano et al. give a detailed 
overview of various other applications for which fingerprinting can be of use [367]. 

Fingerprinting is not to be confused with watermarking; the latter embeds a perceptu-
ally unnoticeable data block directly in the audio data, utilizing methods similar to per-
ceptual audio coding. Watermarking thus enables the content provider to embed different 
watermarks in the same audio content. It allows, for example, to embed a user-specific 
watermark in the specific copy of the recording in order to identify this specific user copy 
of the recording later. This is not possible with fingerprinting. Watermarking also allows to 

An Introduction to Audio Content Analysis: Applications in Signal Processing and Music Informatics, 163 
First Edition. Alexander Lerch. 
© 2012 The Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc. 



164 AUDIO FINGERPRINTING 

Table 9.1 Main properties of fingerprinting and watermarking in comparison 

Property Fingerprinting Watermarking 
Allows Legacy Content Indexing + 
Allows Embedded (Meta) Data - + 
Leaves Signal Unchanged + -
Identification of Recording User or Interaction 

embed meta data directly — the user has direct access to this additional data (e.g., song ti-
tle or artist name) while with fingerprinting he would have to rely on a database connection 
or local tags. The major disadvantage of watermarking is that the audio signal has to be 
modified. This can on the one hand possibly degrade the audio quality (with similar quality 
degradation as caused by perceptual encoders) and on the other hand cannot cover legacy 
audio recordings which have been either already distributed or through other (distribution) 
channels. Table 9.1 summarizes the main properties of fingerprinting and watermarking. 

A fingerprinting system consists of two basic building blocks, the fingerprint extrac-
tion of the seed tracks and a database of previously extracted fingerprintings coupled with 
unique identifiers or additional meta data about the piece of music. Figure 9.1 visualizes 
these blocks; the upper part of the graph shows the process of adding new entries to the 
database (done by the service provider) and the lower part shows the query for a recording 
by a client. 

The requirements on a general fingerprinting system have been summarized by Cano et 
al. [368] as: 

■ Accuracy & reliability: high number of correct identifications (TPs) compared to the 
number of missed identifications (FNs) and wrong identifications (FPs). 

■ Robustness & security: high accuracy even in case of a heavily distorted signal. Pos-
sible distortions include lossy compression, added noise, equalization, interference, 
and non-linearities of the transmission path. Sophisticated systems should also be 
robust against changes in tempo and pitch. 

■ Granularity: the shorter the length of an excerpt required for its identification the 
better (modern systems require a length of a few seconds). 

■ Versatility: independence of detection from the file format and the file origin as well 
as an application-independent implementation. 

■ Scalability: good performance on very large databases and a large number of simul-
taneous identification queries. 

■ Complexity: low computational cost of both extracting a fingerprint and finding this 
fingerprint in the database. 

9.1 Fingerprint Extraction 

Since the fingerprint should be robust against bandwidth restrictions and audio format, the 
two most common pre-processing steps are down-mixing to a single mono channel and 
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Figure 9.1 General framework for audio fingerprinting. 
phase and the lower part the query phase 

The upper part visualizes the training 

down-sampling to a lower sample rate (usually 5-20 kHz). Applying a high-pass filter 
discards frequency components below the lowest transmittable frequency of phones in an 
optional pre-processing step. 

The features of interest for the task of fingerprinting are robust to distortions, efficient to 
compute, and allow the unambiguous identification of the recording. While musical prop-
erties might help in the identification process, they are no necessity — low-level features 
generally should suffice. 

A system that can be seen as an early predecessor of today's fingerprinting systems 
targeted the detection of advertisements in broadcast streams [369]. Lourens used the ad-
vertisement's energy envelope and selected a "unique" section serving as fingerprint. In 
most contemporary systems, the features are extracted in the frequency domain. These 
features include MFCCs [370, 371], a spectral flatness measure and a spectral crest factor 
per frequency band [372], a spectral centroid per subband [373], band energies [374] or 
(the sign of) energy band differences [375], carefully selected spectral peaks [376, 377], 
statistical moments of subbands [378], and modulation frequency features [379]. 

Frequently, the extraction process yields multiple features per block (usually each with 
a word length of 32 bits). In order to receive a compact information and to decrease the 
memory footprint many of these features (or the feature derivatives) are quantized into a 
binary or ternary representation. 

The resulting fingerprint then contains a unique series of quantized feature values or 
feature vectors. 

9.2 Fingerprint Matching 

The extracted fingerprint, representing the unknown recording, has to be compared against 
all previously stored fingerprints in the database. The similarity (or distance) measure has 
to be fast for large databases. Common metrics include a correlation measure [380, 381], 
the Euclidean distance [373, 374, 382], and the Manhattan distance (which in the case 
of binary input equals the Hamming distance) [383, 384], but there exist many possible 
alternatives (see, e.g., [385]). 
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Even with a fast-to-compute similarity measure, it is not possible to compare every 
query fingerprint against all stored fingerprints in a large database due to workload and 
response time constraints. It is, for example, possible to pre-compute distances between 
the stored fingerprints in order to find different entry points for the query [374]. It is also 
possible to use different similarity measures, an efficient one to discard many database 
entries in a first run and a second more accurate similarity measure to be computed on the 
selected small subset [386]. 

There are many other ways to improve database performance; one example would be 
to pre-sort the database entries with their "popularity" in order to reduce search time for 
songs with frequent queries. 

9.3 Fingerprinting System: Example 

To allow a better understanding of the process of audio fingerprinting, a widespread and 
frequently referenced system will be explained in detail in the following. It is the Philips 
fingerprinting system as published by Haitsma et al. [384]. 

After the signal is down-mixed to one channel and down-sampled to a sample rate of 
5 kHz, it is subjected to a (von-Hann-windowed) STFT. The block length is 0.37 s and the 
hop size is 11.6 ms. The large block overlap ratio increases the system's robustness against 
time-shift operations. 

The magnitude spectrum is divided into 33 non-overlapping bands in the range 300-
2000 Hz. The bandwidth is logarithmically increasing with frequency to take into account 
the non-linear frequency resolution of the human ear (see Sect. 5.1). The energy E per 
band with band index k is then used to derive a binary result by using both the time and 
frequency derivative: 

,, , (l if(AE(k,n)-AE(k,n-l))>Q 
vFP(k,n)={ t> } ' V " (9-1) 

I 0 otherwise 

with 

AE(k,n) = E(k,n)-E(k+l,n). (9.2) 
This results in a 32-bit word per STFT; Haitsma et al. refer to this word as subfingerprint. 
One complete fingerprint consists of 256 subsequent subfingerprints and has thus a length 
of 3 s. Figure 9.2 shows an overview of the subfingerprint extraction. 

The distance measure for the database search is the Manhattan distance; since the fin-
gerprints are binary the Manhattan distance equals the Hamming distance. The length of 
3 s appears to be sufficient for the identification of a song from the database. The database 
has to contain the series of all subfingerprints of each complete recording. Thus, if the 
database contains one million songs of approximately 5 min length, it holds more than 25 
billion subfingerprints. Even in the case of a highly compressed subfingerprint format and 
the use of the computationally efficient Hamming distance, this amount of subfingerprints 
rules out the brute force approach of searching the whole database for each query. 

Haitsma et al. suggested two methods to improve computational efficiency of the data-
base search, a simple and a more refined method. First, a lookup table is added to the 
database. This table contains all possible 32-bit subfingerprints which leads to a maximum 
number of 232 table entries. Each table entry points to a list of occurrences in the database. 
The lookup table can also be replaced by a hash table for efficiency. 
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Figure 9.2 Flowchart of the extraction process of subfingerprints in the Philips system 

The simple approach is based on the assumption that at least one of the 256 extracted 
subfingerprints has an exact match at the correct position in the database. Therefore, only 
the database entries listed under one of the 256 subfingerprints of the current query have to 
be evaluated as possible matches. 

While this approach reduces the workload dramatically, the assumption that there is at 
least one subfingerprint without a bit error is only valid for audio with minor degradations. 
For highly distorted signals a larger number of bit errors can be expected. It is logical to 
assume bit errors in the subfingerprints. This has the disadvantage of drastically increasing 
the workload: if one bit error is expected per subfingerprint, the number of database queries 
and this the computational workload increases by a factor of 33. In order to reduce this 
additional workload while still taking into account possible bit errors, the concept of the 
reliability of a bit error is introduced in the enhanced system proposal. Since the bits of 
a subfingerprint are computed by energy differences, the likelihood of a bit being flipped 
(a bit error) is high for small energy differences and low for large differences. Thus, the 
bits can be ranked by their reliability and only the unreliable bits have to be flipped for the 
database search. 



CHAPTER 10 

MUSIC PERFORMANCE ANALYSIS 

Music is a performing art. While the differentiation between the score (or the underlying 
musical ideas) and its performance is hard in the case of popular music, this is not the 
case with classical western music. Here, it requires a performer or a group of performers 
who "self-consciously enacts music for an audience" [387]. The performers render the 
composer's work, a score containing musical ideas and performance instructions, into a 
physical realization. 

10.1 Musical Communication 

The communication between composer and listener can be visualized as a chain of musi-
cal communication derived from Kendall and Carterette as shown in Fig. 10.1 [388]. No 
direct communication takes place between composer and listener. Instead, the composer 
translates his musical ideas into a score which is analyzed by the performer to devise a per-
formance concept or plan and finally to render the acoustic realization — the actual music 
performance — which is subsequently perceived by the listener. Each of the communica-
tion stages allows or even enforces interpretation, modification, addition, and dismissal of 
information. 

10.1.1 Score 

A musical score standing in the tradition of western music history always contains in-
formation on pitch and (relative) duration of each note as well as instructions on musical 
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Figure 10.1 Chain of musical communication 

dynamics (compare Sects. 4.2, 5.2, and 6.2). Additional instructions, for instance, on 
character, quality, or specific ways to perform may also be found in the score. Some of the 
contained information is available only implicitly (for example, information on the musical 
structure) or might be ambiguous or hidden, complicating its description and quantification 
as pointed out by many musicologists and music psychologists [319, 389-391 J. 

All this information is subject to the performers' interpretation — they detect and eval-
uate implicit information, try to understand and explain performance instructions, identify 
ways to convey their understanding of musical ideas to the listener, and transform the dis-
crete score representation of pitch, duration, and dynamics to continuous scales. 

It can be observed that modern scores tend to be more explicit in terms of performance 
instructions than historic scores, indicating the composers' intention to eliminate the un-
specified or ambiguous information in the score [389]. This may be due to the increasing 
awareness of the fact that scores often take into account performance rules that may seem 
"natural" at the time of composition but may change over decades and centuries, possibly 
leading to "unintended" performances. 

Although the literature on musical performance sometimes conveys the impression that 
imprecision and restriction of the score representation is undesirable, there can be no doubt 
that there is no true, absolute, or optimal interpretation. Music is a living art and constant 
re-interpretation is the artistic breath giving music life. 

10.1.2 Music Performance 

The music performance is the acoustic realization of the score. Several authors defined the 
expressive parts of a performance as the deviations from a reference performance. Seashore 
saw a "neutral," mechanical score rendition as reference [45]. Other authors defined such 
a reference performance as a performance which is perceived as mechanic (which may not 
be necessarily a mechanical performance [191]) or as a performance with "perfectly nor-
mative rubato (and the equivalent on all other relevant expressive parameters)" [392] which 
is a performance matching all standard or default expectations of the (average) listener. 

Every performance requires a concept or plan created by either a rigorous or a rather 
intuitive and unsystematic analysis of the score (for instance, in the case of sight-reading). 
The performance plan is a mental representation of the music, an abstract list of actions 
that may be realized in an indefinite number of ways and is specified only relative to the 
context [192, 393]. The performance plan is so closely related to the performance itself 
that it does not always make sense to treat them separately, and the following paragraphs 
will not always differentiate between the plan and the performance itself. 

A music performance is highly individual in both its production and its perception. Still, 
a list of parameters that the performance may depend on can be compiled. The number of 
influencing parameters on the performance (and the performance plan) itself is probably 
infinite; nevertheless, the following list attempts to describe the main influences which 
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may explicitly or implicitly influence a musical performance. This list has been inspired 
by numerous texts on music performance [191, 387, 389, 390, 393-399]: 

■ General interpretative rules: These are rules, conventions, or norms which every 
performance follows because it would be perceived as uncommon or even unnatural 
otherwise. 

■ Performance plan and expressive strategy: A concept of interpretation as a list of 
actions that may be influenced by 

- the interpretation of musical structure or shape, e.g., the question of how to suc-
cessfully convey melody, phrases, etc. to the listener, 

- the addition of unexpectedness by deviation from expected conventions or rules, 

- the stylistic and cultural context and rules possibly changing over time, varying 
between countries or following "performance fashions" [396], depending on both 
the historic context (the time the piece of music was composed or premiered) as 
well as on the context at the time of the performance. This includes instruments or 
instrument characteristics, tuning frequencies and temperaments, and specific per-
formance styles with respect to articulation, ornamentation, vibrato styles, tempo, 
and rubato, 

- the musical mood and emotional expression the performer plans to convey to the 
listener, and 

- the performance context such as the expected audience, the style and performance 
plan of other performances and pieces in the concert program. 

■ Performers' personal, social, and cultural background: A broad category including, 
e.g., previous performing and general experiences, teachers and mentors, attitude, 
manners and mannerisms, etc. 

■ Physical influences: The auditory and motorical or — more generally — physical and 
cognitive abilities of the performer may lead to forced or unintended deviations from 
the performance plan. This covers general human limitations such as the motoric pre-
cision in timing as well as attributes of the musical instrument that impose limitations 
on, e.g., fingering and breathing. 

■ Rehearsal: The rehearsal phase allows direct feedback on the performance plan and 
may also train some specific motorical abilities of the performer. 

■ Immediate influences: Influences which may change the performance at the time of 
performance and may lead to a deviation from the performance concept such as 

- runtime feedback control, the feedback that the performer directly receives con-
sisting of auditory, visual, tactile, and other cues [400]; examples include the in-
strument's sound and reaction, the performance of co-performers, the acoustics of 
the environment, and the reaction of the audience, 

- external influences not directly related to the performance such as humidity, tem-
perature, distractions, and 

- "internal" influences such as the emotional and physical state of the performers 
(stress, stage fright, fatigue, illness, etc.). 



172 MUSIC PERFORMANCE ANALYSIS 

10.1.3 Production 

Recorded performances can differ significantly from the live performance, even in the case 
of so-called live recordings [397,401 ]. The reason is that persons other than the performers 
themselves, for instance, the producer, sound engineer, and editor will influence the final 
result during the production stage. Furthermore, mechanical and technological restrictions 
enforce differences between an original and reproduced performance but also open up new 
possibilities of improving a recorded performance during the post-production process. To 
give an example, it is established recording practice to not only record several complete 
performances and finally choose the "best," but instead to record several so-called takes of 
passages of the musical piece. The recording process can also involve repeated listening 
to the recorded takes and discussions on the performance with influence on the following 
performances. Afterward, it is decided which parts of these takes will finally be used on the 
published CD, and these will be edited in a way that the edit points are inaudible. Having 
analyzed seven productions of Beethoven's 9th Symphony, Weinzierl and Franke found 
between 50 and 250 cuts between different takes in each production; the average number 
of edits increased with the technical evolution [402]. Modern software allows the editing 
of audio signals at nearly any score position. 

Microphones and their positioning as well as signal processing applied by the sound 
and mastering engineers may impact the loudness, the timbre, the reverberation, and other 
parameters of the recording. These "interventions" can also vary over time to artificially 
increase or decrease acoustical or performance-based effects (e.g., increase the loudness 
of a specific instrument for its solo part). Maempel et al. give an overview on processing 
options and typical objectives in the post-production context [403]. 

The musician's and the producer team's influences are not distinguishable on the final 
product, for example, the CD [404]. It is common practice to refer to the resulting recording 
as music performance; this seems to be a valid approach as the artist usually states his final 
agreement with the recording. 

10.1.4 Recipient 

The listener, as the receiving end point of the chain of musical communication, subjec-
tively interprets the music. He listens to a performance and conceives musical ideas and 
other information conveyed by the performance. As Lundin points out, the kinds of pos-
sible affective reactions of listeners are practically limitless [405] and allow a multiple of 
different research angles. 

10.2 Music Performance Analysis 

Music Performance Analysis (MPA) aims at studying the performance of a musical score 
rather than the musical score itself. It deals with the observation, extraction, description, 
interpretation, and modeling of music performance parameters as well as the analysis of 
attributes and characteristics of the generation and perception of music performance. 

Different areas of research contribute to the field of MPA, including musicology, 
(music) psychology and engineering. A valuable introduction to the research field is given 
by Clarke [406]. Articles providing extensive overviews have been compiled, for instance, 
by Gabrielsson [192], Palmer [390] and Goebl et al. [407]. 
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Three basic directions can be identified in the field of systematic performance analysis, 
namely the study of 

■ the performance itself, i.e., the identification of common and individual characteris-
tics in the performance data, general performance rules, or differences between indi-
vidual performances, 

■ the generation or production of a performance, i.e., the understanding of the under-
lying principles of performance plans, the relation of the performers' intention to 
objective performance parameters, and the performers' motoric and memory skills, 
and 

■ the reception of a performance, i.e., the investigation of how performances or the 
variation of specific parameters are perceived by a listener and how he is affected. 

MPA could on the one hand lead to more explicit formulations of the different (objective) 
performance characteristics in the practice of music teaching or enable the development of 
teaching assisting systems giving the student direct and objective feedback on the perfor-
mance parameters. On the other hand, it could assist the implementation of performance 
models which generate computer renditions of human-like music performances. MPA also 
allows us to gain valuable insights for the research fields music psychology, music aesthet-
ics, and music history. 

As Clarke points out, "musical analysis is not an exact science and cannot be relied 
upon to provide an unequivocal basis for distinguishing between errors and intentions" 
[406], emphasizing the challenge of meaningful interpretation of extracted performance 
data. A related difficulty that MPA has to deal with is to distinguish between inherent 
performance attributes and individual performance attributes. In the context of musical 
accents, Parncutt [191] distinguishes between immanent accents which are assumed to be 
apparent from the score (structural, harmonic, melodic, metrical, dynamic, instrumental) 
and performed accents "added" to the score by the performer. This approach may be 
applied to nearly all extracted parameters, and in the general case it might not be possible 
to distinguish score-inherent and performer-induced characteristics. 

The interpretation of the meaning of parameters derived from performance data is a 
difficult task. In the end, final conclusions can only be drawn by taking into account sub-
jective judgments. The methodology and questionnaire or rating scale for such subjective 
tests and how they relate to performances, however, has only begun to evolve to systematic 
approaches during the last decade [408]. The problem of extracting relevant characteris-
tics is apparent in the design of systems intended to automatically generate music per-
formances from a score. Clarke notes (in the context of parameters possibly influencing 
performances): "Whatever the attitude and strategy of different performers to this wealth 
of influence, it is clear that a theory of performance which is presented as a set of rules 
relating structure to expression is too abstract and cerebral, and that the reality is far more 
practical, tangible and indeed messy" [396, p. 66]. 

10.2.1 Analysis Data 

10.2.1.1 Data Acquisition 

The acquisition of empirical data is one of the crucial points in systematic MPA. Among the 
various methods that have been proposed and used to acquire data, two general approaches 
can be identified: monitoring performances (or performance parameters) by mechanical or 
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technical devices, or extracting the parameters from an audio recording of the performance. 
Both concepts have inherent advantages and disadvantages. 

The monitoring approach usually provides accurate and detailed results since the mea-
surement devices can track the performance parameters more or less directly, but the anal-
ysis is exclusively restricted to specific performances which were produced under special 
conditions and with the specific performers that were available. 

The direct extraction of performance parameters from the audio signal — as opposed to 
from the instrument with sensors — is difficult and most definitely results in less accurate 
data. This is true for both the manual annotation of audio (such as marking onset times) 
and the fully automated extraction of data. Additionally, some parameters of interest may 
be even impossible to extract from the audio such as information on piano pedaling or note-
off times. Other parameters of interest such as the performers' movements are obviously 
not extractable from the audio at all. 

The advantage of extracting parameters directly from the audio signal is the possibil-
ity to analyze an enormous and continuously growing heritage of recordings, including 
outstanding and legendary performances recorded throughout the last century and until 
now. Hence, audio-based approaches allow to widen the empirical basis considerably with 
respect to the amount of available sources and their significance. 

To extract the tempo curve from an audio recording, the usual approach is to either 
tap along with the performance [409, 410] or to manually annotate the onset times in a 
wave editor/display or a similar application [184, 411-419]. Both approaches have also 
been automated or partly automated by the use of automatic beat tracking systems (see 
Sect. 6.5) — followed by manual correction of beat times — [306, 420^23] or more re-
cently by audio-to-score alignment algorithms using MIDI data as additional input [238, 
269, 2731 (compare Sect. 7.3.2). The main difference between tap-along and beat-tracking 
approaches as compared to manual onset time annotation and alignment systems is that 
in the former case the resulting tempo curve resolution is on the beat level, meaning that 
between-beat timing variations cannot be analyzed, while the latter usually takes into ac-
count each single onset time, whether this note lies on a beat or not. 

Piano or Keyboard Performance 
The introduction of mechanical pianos at the end of the 19th century made the acquisition 
of objective performance data possible through piano rolls. For example, Hartmann pre-
sented an early analysis of tempo and timing of two piano performances based on their 
piano rolls [424]. There are also later approaches to the analysis of performance data from 
piano rolls [425]. 

Other historic approaches used proprietary sensors that were built to extract perfor-
mance data. The most prominent example is the Iowa Piano Camera that was used by 
Seashore and his team at the University of Iowa in the 1930s [45]. For each piano key, 
this "camera" recorded onset and note-off times and hammer velocity by optical means. 
Another example of a proprietary system is Shaffer's Bechstein grand piano using photo 
cells to detect hammer movements [187]. 

The introduction of the MIDI specification in the 1980s [3] resulted in an increasing 
number of electronic instruments and MIDI sequencers as well as compatible computer 
hardware and software solutions and opened up new possibilities to measure, store, and 
analyze pianists' performance data. Partly, music performance research has been done 
with the help of electronic instruments such as synthesizer keyboards and electronic pi-
anos [426-428], but the majority concentrated on using acoustic instruments with built-in 
sensors which automatically output MIDI (or similar) data such as the Yamaha Disklavier 
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product series or Bösendorfer grand pianos with the so-called SE-System [180, 332, 334, 
429^40]. 

Other Instruments or Instrumentations 
Most non-piano instruments represented in the literature on music performance are mono-
phonic, meaning that two or more notes can never occur simultaneously. In this case, 
common approaches to fundamental frequency detection are robust enough to extract the 
variation of pitch over time (compare Sect. 5.3). Proprietary as well as commercially avail-
able systems have been applied to the task of pitch extraction for MPA [45, 115, 324, 441-
447]. Seashore invented the "Tonoscope" for the pitch analysis of monophonic signals [4]. 
It consists of a rotating drum covered with a paper containing small dots, each representing 
a certain frequency. The input signal is — by the means of a light-emitting gas tube — 
projected on the rotating paper. If the input frequency matches one of the frequencies a 
dot represents, this line of dots will stand still for the observer and gives a clear indica-
tion of the frequency. The "Melograph" appears to be basically of a similar design [444]. 
Other studies work with spectrogram visualizations, use commercially available software 
solutions for the detection of monophonic pitches, or implemented their own software al-
gorithms for the pitch detection. 

The majority of these systems are not able to extract onset times with sufficient accu-
racy, so tempo and timing information is either not analyzed or is extracted by manual 
annotation. However, to name two counter-examples, Kendall compared timing and dy-
namics of monophonic melodies performed on piano, clarinet, oboe, violin, and trumpet 
[388], and Ramirez et al. used automatically extracted timing data for the identification of 
performers of violin recordings [447]. 

The tempo and timing data for other, non-monophonic signals has usually been ex-
tracted by tapping along [410] or by manually setting onset time labels [186], [448], [449]. 
Clynes did not analyze the tempo on a beat or onset level but measured the overall duration 
of single movements [450]. 

Lerch analyzed a set of string quartet performances of a movement of a late Beetho-
ven quartet with respect to tempo, timing, and timbre by utilizing an automated system 
accompanied by manual correction [274]. 

10.2.1.2 Instrumentation 

The majority of musical performance research focuses on the piano as the instrument 
of main interest. One of the obvious reasons is that the piano is a very common in-
strument with a large (solo) repertoire, but there are more reasons that make the piano 
an appealing choice. The tones produced by a piano have a percussive character that 
makes this instrument far more suitable for accurate timing analysis than, for instance, 
string instruments. Its mechanics make it possible to measure data with sensors less in-
trusive than on other instruments that offer a more direct interaction between performer 
and sound production. Furthermore, the pianist is in some ways more restricted than 
other instrumentalists; he is limited to fixed (and equally tempered) pitch frequencies 
which rules out expressive intonation and other performance specifics such as vibrato. 
He also has little influence on the timbre of a played note, and after hitting a key, he is not 
able to control any of the typical note parameters such as pitch, loudness, or timbre except 
its duration. From a technical point of view, these restrictions seem to make the piano a 
rather unattractive instrument with limited degrees of freedom, but even with these limi-
tations, piano performances are an integral part of western cultural life, meaning that the 
mentioned restrictions do not really impede the communication of musical expression be-
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tween pianist and audience. The reduction of possible parameter dimensions is, however, 
beneficial in performance research because it keeps the measurement data set smaller. Last 
but not least, the (commercial) availability of electronic and acoustic instruments using 
MIDI as a universal communication protocol simplified the performance data acquisition 
significantly since custom-built solutions were no longer necessary. While the recording 
of MIDI data from other non-keyboard instruments is at least partly possible, the fact that 
MIDI is a keyboard-focused protocol results in limited usefulness in many cases. 

Despite the good reasons for the usage of piano as the main instrument for performance 
analysis, it has not yet been conclusively shown that the insights gained from piano per-
formance analysis can be applied to performances with other instruments and ensembles 
(although the few studies done on other instruments indicate that this might at least partly 
be the case). 

Other solo instruments include the singing voice [45, 115, 441, 445], string instruments 
such as violin, viola, and violoncello [45, 324, 388, 443, 444, 446, 447], wind instruments 
such as flute, clarinet, oboe, and trumpet [388, 442, 444], organ [448, 449], and percussion 
instruments [451]. 

There exist also some publications on chamber music performance [ 186, 274,410,450]. 

10.2.1.3 Variety and Significance of Input Data 

With respect to the question if and how reliably conclusions can be drawn from the ex-
tracted data, it is important to verify how and from whose performance this data has been 
generated. 

For example, it could be argued that performance data gathered under "laboratory con-
ditions" is insignificant per se due to the unnatural recording environment; however, these 
special conditions are also given for many (studio) recording sessions which resulted in 
recordings that are in fact perceived as convincing performances by the listeners. 

Still, when the data is acquired under such laboratory conditions, it implies that the 
number and possibly the skill of the available performers might be limited. For example, 
research had partly been done on student performances [180, 332, 413, 429—431, 433, 
434, 439, 443]. This fact by itself is not too remarkable, but it nevertheless emphasizes 
the question if and how research methods and conclusions take into account the possible 
discrepancies between the performances of student pianists (or just available pianists) and 
the performances of professional (and famous) pianists. Under the assumption that fame is 
related to higher professional skills of the performer this could be a noteworthy criterion. 

Due to the difficulties of acquiring large sets of performance data described above, the 
number of performers per study is usually small. The majority of research in the presented 
paper database has been done with a number of 5 or less performers per publication [ 186, 
187, 194, 324, 388, 410, 411, 420, 423, 424, 427, 428, 433, 435-438, 440, 441, 445, 449, 
451-454] or G-10 performers [180, 421, 422, 429-432, 439, 455]. Some studies evaluate 
a larger number of 15-25 performers [184, 274, 412, 413, 434, 444] and an analysis of an 
outstanding number of 108 performers (115 performances) has been presented by Repp in 
the late 1990s [414-416]. 

This raises the question if and how insights gained from a small group of performers 
can be extrapolated to allow general assumptions on performances. 

10.2.1.4 Extracted Parameters 

The basic categories of information extractable from audio signals have been introduced 
earlier as temporal, tonal, intensity-related, and timbral (compare Sect. l.l). 
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The variation of tempo and timing is one of the most thoroughly researched aspects in 
MPA. The analysis of the articulation is in most cases restricted to keyboard performances 
captured in MIDI format. Articulation is then simply interpreted as a measure of performed 
note overlap or note duration with respect to the note duration as given by the score. 

In order to analyze the musical dynamics in a performance, the level or loudness is 
extracted using sound level or psycho-acoustically motivated loudness measurements as 
presented in Chap. 4. Strictly speaking, such measurements do not correspond directly 
to musical dynamics as these would depend on the musical context, on the instrument or 
instrumentation, and on the timbre. Nevertheless, intensity and loudness measurements 
seem to provide a reasonable approximation to dynamics [84, 456]. 

Pitch-related performance parameters such as vibrato and intonation can be analyzed by 
extracting the fundamental frequency variation from the audio signal. Due to technological 
restrictions of current analysis systems for polyphonic music, this usually has been limited 
to monophonic input signals. 

The analysis of timbre deviations in performances is probably one of the least-
researched parameters in MPA. This may be on the one hand due to the multi-dimensional 
nature of timbre (see Sect. 3.3), on the other hand because it is assumed to be of least im-
portance and partly of high correlation with dynamics. One study on the timbre variation 
of string quartet performances led to inconclusive results [274]. 

10.2.2 Research Results 

10.2.2.1 Performance 

Many studies focus on a rather descriptive approach to performance analysis by just ana-
lyzing extracted data such as the tempo curve [45, 184, 187, 411,412, 414, 424, 426, 457] 
or the loudness/energy curve [45, 415, 429] to identify attributes of the extracted parame-
ters between different performances and performers. 

The relation of musical structure (melodic, metric, rhythmic, harmonic, etc.) or the mu-
sical gestalt to tempo and loudness deviations has been intensely researched [187,188,387, 
390, 410, 415, 424, 429, 440, 453, 458, 459]. Most authors agree on the close relationship 
between musical structure such as musical phrases or accents and performance deviations 
mainly in tempo and timing. In particular, larger tempo changes seem to be most common 
at phrase boundaries. There is a general tendency to apply ritardandi or note lengthening 
at the end of a phrase and moments of musical tension [184, 274, 412,414, 426]. 

There are no conclusive results on the coupling of timing with dynamic patters [415, 
429]. 

Desain et al. and Repp report on the influence of overall tempo on expressive timing 
strategies [427, 460]. They find that the concept of relational invariance cannot be simply 
applied to expressive timing at different tempi, a result similar to Windsor's, who analyzed 
tempo-dependent grace note timing [435]. The overall tempo might also influence overall 
loudness, an effect possibly linked to the increasing amplitude of pianists' vertical finger 
movements toward higher tempi [461]. 

Goebl investigated the relationship of the composer's tempo indications (andante, al-
legro, etc.) with the "real" tempo and was not able to separate different tempo classes 
sufficiently well with the tempo extracted from the performance [194]. The number of 
note events per minute, however, seemed to be easier to map to the tempo indications. 

Studies on the timing of pedaling in piano performance indicate some relationship be-
tween pedal timing and overall tempo [428, 431]. 
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In the context of keyboard instruments the articulation, or the amount of key (non-) 
overlap, has been studied [424, 426, 432, 433, 448, 449, 462]. In summary, key overlap 
times for legato articulation seem to decrease with increasing IOIs. 

Studies of the accuracy of timing synchronization of two and more performers showed 
that performers are highly capable of synchronizing onset times even when modulating 
the tempo [186, 187]. Other publications deal with the timing synchronicity between both 
hands or between the melody and the accompaniment in piano music [187, 424]. In many 
cases of piano performance, a lead of the melody before accompanying voices can be 
observed [426], but whether this represents a performance concept or a consequence of the 
higher velocity of the melody tones is subject of discussion [180, 434]. 

The evaluation of the consistency of repeated performances of the same performers 
has shown their ability to reproduce a rendition quite exactly in terms of timing [45, 187], 
dynamics [429], and pedal timing [428]. This seems to be the case for performances spaced 
by several years as well [410, 415]). 

Performance data from student and professional performances has been compared in 
[426] and [413]. While individual differences tended to be more pronounced among the 
professionals, both groups seemed to share the same general performance concepts. 

Repp investigated the (statistical) relationships between the extracted performance data 
and sociocultural variables such as the artists' gender, nationality, year of birth, and record-
ing date but, although the correlation was sometimes significant, pointed out that these re-
sults should be regarded with caution and that individual differences are likely to outweigh 
any sociocultural correlation [414, 415]. In a similar study with a smaller data set, Lerch 
found no significant relationships [274]. 

Walker showed that instrumental timbre may influence several performance parameters 
such as timing, articulation, and dynamics [442]. 

The analysis of vocal performances focuses frequently on the evaluation of vibrato rates 
and depth and the change or stability of pitch over time [45, 115, 443,445] or other intona-
tion characteristics of the performance [441, 444]. Fletcher analyzed the vibrato (and other 
acoustical features) of flute players [116J. 

Statistical and machine learning approaches have been tested to use the extracted tempo 
and loudness information for the purpose of classification, structuring the data, or extract-
ing general rules from the data. Dovey tried to extract general as well as individual rules 
from two of Rachmaninov's piano roll recordings by using a logic programming approach 
[425]. Supervised learners can be used to assign representations of the extracted perfor-
mance data to the corresponding artists with promising results [421, 422, 436, 454]. Other 
machine learning methods have been used to identify general performance rules [417-419, 
437, 438] and to determine individual differences between artists [420]. 

10.2.2.2 Performer 

While the publications listed above deal mainly with the analysis of the performance itself, 
the second area of MPA tries to determine the capabilities and goals of performers. 

Repp analyzed the type of errors (i.e., pitch deviations from score) pianists make during 
a performance and checked if and how severe they were perceived by listeners, coming 
to the conclusion that the errors concentrated in less important parts of the score and thus 
were hard to recognize [430]. 

The relationship between the performers' intentions and the parameters extracted from 
performances has been studied in various ways. Palmer found good correspondence be-
tween notated intentions with respect to melody and phrasing and the extracted timing 
parameters [426]. Also, systematic relationships between the intended emotionality of the 
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performance and the performance data (that is, representations of loudness and timing) can 
be detected [323-325,454]. 

Other studies investigate the importance of the feedback of the music instrument to the 
performer [393]; there have been studies reporting on the effect of deprivation of auditory 
feedback [439, 455], investigated the performers' reaction to delayed or changed auditory 
feedback [463-465], or evaluated the role of tactile feedback in a piano performance [466]. 

Publications on the nature of memorization and learning of a musical piece (or its per-
formance) tried to identify differences between novice and expert performers [467], to 
learn more on the nature of performance memory itself [468^470], and to find out more on 
the relation between a real and a virtual, imagined performance [439]. 

10.2.2.3 Recipient 

It is the listener of a music performance who ultimately consumes, interprets, and prob-
ably judges it. Overall judgment ratings of performance data have been investigated in 
various studies. In an early publication, Repp reported some significant relations of rat-
ings to measured timing patterns [412], while in a later study he had to conclude that "the 
aesthetic impression of the original recordings rested primarily on aspects other than those 
measured (such as texture, tone, or aspects of timing and dynamics (...))" [416]. Tim-
mers did a similarity rating experiment and concluded that performances are judged in 
other ways than generally used to represent performance data [306]. In a different study, 
she let listeners rate the goodness of fit of two parts of different performance pairs [471]. 
Kendall investigated the communication of three levels of expressiveness: without expres-
sion, with appropriate expression, and with exaggerated expression [388]. Listeners were 
in many cases able to identify these three levels. Thompson et al. investigated the variation 
of listener ratings for a performance over time and found that the listening time to reach 
a decision was typically in the short range of 15-20 s [472]. Weinzierl and Maempel in-
vestigated how much of the listener's impression of the performance can be explained by 
common acoustical features [408]. 

Juslin detected relationships between moods and both tempo and loudness cues [323], 
and Kantor reported on associations of such cues and emotional reactivity [331]. Sim-
ilar conclusions have been drawn from studying the time-variant emotional valence or 
the arousal and its relationship with performance data [332, 333]. Timmers found strong 
correlation between the dynamics and listener's judgments of emotionality and very good 
communication of emotional activity between performer and listener [334,473]. In another 
study, she examined the influence of recording age and reproduction quality, observing that 
judgments of age and quality changed strongly with the recording date, in contrast to the 
perceived emotion which were mostly independent of the recording date; the communica-
tion of emotional valence tended to be more restrained for old recordings [474]. Husain 
varied the tempo and the mode (major, minor) of a performance and found indications 
that tempo modifications had an effect on arousal and mode modifications on mood [335]. 
Krumhansl evaluated the influences on timing and loudness variations on judgments of 
musical tension and found a close relationship of musical structure with both the listeners' 
musical tension rating and the performance data [458]. 

has been studied by Dixon, who found listeners to prefer smoothed beat sequences over 
the performed ones [423]. 

Lapidaki investigated the dependency of the initial tempo of a performance on the pre-
ferred tempo of a musical piece [475]; he found a general dependency although he also 
identified a group of listeners that were able to come to very consistent tempo preferences. 
Repp found systematic deviations between the tapping of listeners and metronomical time 
of music events, a result that seems to correspond well with the performers' inability to 
render a performance mechanically [476]. Aarden reported dependencies between tempo 
and "melodic expectancy" [477]. 



APPENDIX A 

CONVOLUTION PROPERTIES 

Convolution is one of the most regularly applied operation in audio signal processing. It 
applies to all linear and quasi-linear systems such as filters and rooms. In this chapter the 
most fundamental properties of this operation will be derived. 

A.1 Identity 

The result of a convolution with a delta function is the signal itself: 

x(i) = S(i) * x(i). (A.l) 

The result for each individual sample can be computed by the sum of the sample itself 
(weighted by 1) and all other samples weighted by 0, i.e., the sample value itself [compare 
Eq. (B.29)]. 

A.2 Commutativity 

Changing the order of operands does change the result of the convolution operation. That 
means that the distinction between impulse response and signal is of no mathematical 
consequence in the context of convolution: 

h(i)*x(i)=x(i)*h(i). (A.2) 
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This can be shown by substituting j ' = i - j : 

oc 

x(i)*h(i) = Σ HJ)-x{i-3) 
j=~OG 

oc 

= Σ h(i-j')-x(f) 
j ' — — oo 

oo 

= Σ x(j')-h(i-j'). (A.3) 

A.3 Associativity 

The associative property of convolution means that changing the order of subsequent con-
volution operations does not change the overall result. When applying two or more filters 
to a signal, the output will be identical for every order of filters.' This means that 

(g(i) * h(i)) * x(i) = g(i) * (h(i) * x(i)). (A.4) 

This can be derived by changing the order of sums and shifting the operands as shown 
below: 

oc 

(g(i) * h(i)) * x{i) = ^ (g(j) * h{j)) ■ x(i - j) 
j = — OC 

OC / OC \ 

= Σ Σ 9(1) ■ h{j - l)\ ■ x(i - j) 
j — — oc \l= — oc / 

oo / oc \ 

= Σ Σ 9V) ■ h(j - I) ■ *(i - :i)) 
j — — oc \l — — oo / 

oo oc 

= Σ Σ g(i) ■ Hj -1) ■ x(i - j) 
l— — Oi-'j — — co 

oc oo 

= Σ 9(1)- Σ h(j-l)-x(i-j) 
I — — oc j — — oo 

oc oo 

= Σ s(o- Σ Ηϋ-Φ-ι-:ί) 
l= — oc j = — oo 

oo 

= Σ 9(1) ■ (h(i - I) * x(i - I)) 

= y(i)*(h(i)*x(i)). (A.5) 

'Strictly speaking this is only true for unlimited word length. The lower the word length the more the output 
signal differs from the expected signal. 
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A.4 Distributivity 

The order of different linear operations is irrelevant due to the distributive property of the 
convolution, for example: 

g(i) * (h(i) + x(i)) = g(i) * h{i) + g(i) * x(i). (A.6) 

This means that two signals, one computed by applying a filter to two different signals and 
summing them together afterwards, the other computed by applying the filter to the sum of 
the signals, are identical: 

oo 

g(i) * (h(i) + x(i)) = Σ 9{j) ■ {Hi - j) + x(i - j)) 
J = —OO 

OO 

oo oo 

= Σ 9(J) ■ h(i ~J)+ Σ SÜ) ■ x(i - J) 
j —--oo j= — oo 

= g(i)*h(i)+g(i)*x(i). (A.7) 

A.5 Circularity 

The convolution with a periodic signal will result in a periodic output signal. The periodic 
signal x(i) is the sum of the shifted (fundamental) periods with length N: 

oo 

x(i) = Y2 XN(i + nN). (A.8) 
n = —oo 

With xN{i) = 0 for i < 0 V i > N. We can show that 

oo oo 

x{i)*h(i) = ^ Hi-J) Σ xN(j + nN) 
j = — oo n= — oo 

oo oo 

= Σ Σ h(i-j)-xN(j + nN) 
n= — oo j— — oo 

oo 

= J ] XN{i + nN)*h(i). (A.9) 
n= — oo 

The multiplication of two spectra computed with the DFT will result in a circular convolu-
tion; the result will be the convolution of the two periodically continued sample blocks. 
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FOURIER TRANSFORM 

The Fourier Transform (FT) is widely used in audio signal analysis and synthesis. Under-
standing its properties is crucial for the design of audio processing systems. 

Deriving the FTs fundamental properties is easier for continuous signals; we will thus 
focus on the continuous domain first and will then discuss the FT of windowed signals, the 
FT of sampled signals, and finally the Discrete Fourier Transform (DFT). 

Periodic signals can be represented as a Fourier series as introduced in Eq. (2.3). The 
fundamental frequency ωο determines the "frequency resolution" of the series. For the 
analysis of non-periodic signals we let the period length grow To —¥ oo (or equivalently 
ωο —> 0). This has the effect that the previously discrete frequency resolution becomes 
continuous with kuio —> ω. Due to the resulting infinite resolution of the frequency axis, 
the coefficients will decrease ak -> 0. The formula for the Fourier series given in Eq. (2.3) 
thus changes into the FT: 

oo 

X(jw)= £ { x ( i ) } = f x{t)e-i0Jtdt (B.l) 

— oo 

and XQLO) is the so-called spectrum of the signal x(t). 
The real and imaginary parts represent the cosine and sine functions, respectively. A 

common form of visualizing the results is to represent the spectrum as magnitude |X(jw)| 
and phase Φχ (jw) instead of real and imaginary parts. Frequently only the magnitude 
spectrum is being used for the visualization of the spectrum while the phase spectrum 
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is ignored. Another common representation is the power spectrum which is the squared 
magnitude spectrum. 

B.1 Properties of the Fourier Transformation 

B.1.1 Inverse Fourier Transform 

The FT is invertible. XQLJ) can be converted back from the frequency domain into the 
time domain signal x(t) by applying the Inverse Fourier Transform (IFT): 

oo 

x(t) = Ϊ " 1 {XQLÜ)} = i - j Χ(}ω)έωί άω. (Β.2) 

— oo 

That means that time and frequency representation are equivalent, i.e., no information is 
gained or lost by applying the FT to a signal; it just changes the representation of the signal. 

It becomes also obvious from comparing Eqs. (B.1) and (B.2) that forward and inverse 
transform are very similar operations (see also Sect. B.1.6). 

B.1.2 Superposition 

If the signal y[t) is the weighted addition of the signals x'i(f) and X2(t) 

y(t) = cl-x1(t)+c2-x2(t), (B.3) 

then the same relationship is true for their frequency transformation: 

oo 

YQw) = I (Cl · n ( t ) + c2 · x2(t)) ■ e~iut dt 
— OO 

OO OO 

= Ci · ί x1(t)er>UJtdt + c2- j x2{t)e->ujt dt 
— oo —oo 

= c1-X1(jw) + C2-X2(jw). (B.4) 

B.1.3 Convolution and Multiplication 

The convolution of signal x(t) with the impulse response h(t) 

y(t) = h(t)*x(t) 
OO 

/ h(r) -x{t-r)dT (B.5) 

corresponds to a multiplication in the spectral domain 

Υ(ίω) = Η(ίω)-Χ(ίω). (Β.6) 
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The derivation involves clever grouping and expansion: 

oo 

Υ(ίω) = J y(t)e-^dt 
— OO 

OO / OO \ 

— oo \-oo / 
OO O O 

— OO — O O 

O O OO 

= ( /i(r)e-ju;T f x(t - τ)β-'ίω{-ι-τ) d{t - T) dr 

OO 

= ί /i(r)e-jWT dr ■ X(jw) 
— OO 

= Η(ϊω)-Χ()ω). (Β.7) 

This property allows the efficient computation of the convolution of a signal with an FIR 
filter with a long impulse response in the frequency domain [478]. 

The same relationship exists for convolution in the frequency domain. The convolution 
operation 

Y(ju) = H(jtj)*Xtiu>) (B.8) 

could be replaced by a multiplication in the time domain 

y(t) = h(t) ■ x{t). (B.9) 

B.1.4 Parseval's Theorem 

The energy of the signal can be calculated in both the time and the spectral domain: 

OO OO 

j x\t) dt=^ ί \Χ(]ω)\2 άω. (B.10) 

This can be shown by using the equivalence between multiplication in the frequency do-
main and convolution in the time domain. Writing 

OO OO 

j h(r)-x(t-T)dr=^ [ Η(ιω)-Χ()ω)(ίωίάω (B.ll) 
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and replacing Η(]ω) with the conjugate-complex spectrum Χ"()ω) and h(r) with x ( - r ) , 1 

respectively, the result at t = 0 is 

OO CO 

X(-T) ■ X{-T) (IT = -*- f Χ*{)ω) ■ X{ju>) άω, 
ζπ J 

— Oo 

oo oo 

.x2(i)rfi = i - /" |XGu) | 2dw. (B-12) 

B.1.5 Time and Frequency Shift 

The transform of a signal shifted by a constant in time y(t) = x(t — io) is 

Υ{]ω) = Χ{}ω)<-'ίω1α. (Β.13) 

This means that the magnitude spectrum will be identical but the phase spectrum will have 
a linear offset Φγ-(ω) = Φχ(ω) — ωί0: 

x{t - to)e-j*"-dt = / ,τ(τ)β-·'ω(τ+'") d,T 

'SU}t" / χ{τ)β']ωτ άτ e 

= e,-'iWto -Χ()ω). (Β.14) 

Equivalently, the shifted spectrum2 Y(jo>) = XQ(UJ — OJQ)) corresponds to the time domain 
signal y(t) = x(t) ■ e^ut which is the original signal modulated by a sinusoidal signal: 

oo oo 

^ J X f > - u>oW»ldw = ^ j Χ0φ)ε^+^άφ 

— OO — O O 

= ejuJüt -x{i). (B.15) 

B.1.6 Symmetry 

If the time domain signal x{t) is real-valued, then its frequency transform will be symmet-
ric with X(]ui) = X*(~jw). The magnitude is symmetric around the ordinate: 

\Χ$ω)\ = \Χ{-]ω)\ (Β.16) 

while the phase is symmetric around the origin: 

Φ χ Μ = - Φ χ ( - ω ) . (Β.17) 

Vice versa, if the frequency transform is real-valued, then the time domain signal will be 
symmetric with x(t) = x(—t) and if Χ(]ω) is imaginary it means that x(t) = —x(—t). 

Only real-valued time domain functions x(t) are considered here. 
2In real-valued time signals, this shift has to be applied symmetrically to the negative frequencies. 
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This can be shown by representing the time signal x(t) as a sum of an even component xe 

and an odd component x0{t): 

*(*) = \ (*(*) + x(~t)) + \ (*(*) ~ <-*)) ■ (B.18) 
" V ' " v ' 

Xe(t) Xo(t) 

The FT of the even and odd signal components is then 

oo oo 

XeQw)= / xe(t) cos(üJt) dt ~} xe(t)sm(uit)dt, (B.19) 

— oo —oo 
v v ' 

= 0 
oo oo 

^o(jw) = / a;0(i)cos(a;i)di —j / x0(t) sin(wi) dt. (B.20) 

— oo —oo 
V 

=0 

The transform of the even signal is thus purely real Xe(jw) = SHe[X(jw)], and the trans-
form of the odd part is purely imaginary Χ0(ϊω) = 3m[X(jw)]. Furthermore, due to the 
property cos(wi) = cos(—ωί), it becomes clear that the real part is again an even function 
symmetric around ω = 0. The imaginary part is odd due to sin(wi) = — sin(—uit). It 
follows that the magnitude spectrum is an even function and the phase spectrum is an odd 
function. 

We have seen that the FT is very similar to the IFT; thus, if XQu>) is the FT of the 
signal x(t), then it would also be true that 2π · x(-ju)) is the transform of X(t). This can 
be shown by substituting t with — ω in the IFT: 

oo 

x(t) = ± J XÜL,)Jut(L·, 

— oo 

oo 

x(-t) = ± J Xtiu>)e-'>ut<L·, 

x(-jw) = ^ j X(t)e-^dt. (B.21) 

B.1.7 Time and Frequency Scaling 

The FT of a signal modified in the time domain by scaling the time axis y(t) = x(c ■ t) 
will be scaled inversely: 

rfr) = hx(&)· ( Β · 2 2 ) 
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The derivation (for positive c) is 

Υ()ω) = I x(c ■ i ) e - j ^ dt 

χ(τ)β-'ιω* d-

x(r)e i'-Tdr 

= \χ(β· ( Β · 2 3 ) 

For negative c, the result is Y(ju) = -j.XQ^). The spectrum of a stretched signal (c > 1) 
will thus be compressed and vice versa. 

From the above equation it directly follows for c = - 1 that 

3{x(-t)} = X{-JLü) (B.24) 

and for a real-valued signal x(t) 

${x(-t)} = X'(j«j). (B.25) 

B.1.8 Derivatives 

The transform of the nth derivative of the signal has the following property (without deriva-
tion): 

S { ^ ^ } = (j")n*(ju;). (B.26) 

B.2 Spectrum of Example Time Domain Signals 

B.2.1 Delta Function 

The delta function S(t), sometimes also named dirac impulse or delta impulse, equals zero 
for all points in time except t = 0. It represents an ideal impulse and is defined by 

DO 

I 6(t)dt = 1, (B.27) 
— OO 

S(t) = 0 for alii ^ 0. (B.28) 

This also means that the integration of the multiplication of signal x(t) with this delta 
function results in 

I x(t) ■6{t)dt = x(0). (B.29) 
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Thus, the result of the FT is 

A(jw) = ί S(t)e-'lut dt = ej"'° = 1. (B.30) 

— oo 

The spectrum is therefore a real-valued constant; it follows that the delta function incorpo-
rates all frequencies with the same strength. 

B.2.2 Constant 

The symmetry of FT and IFT shown in Eq. (B.21), in combination with Eq. (B.30), tells 
us also that the spectrum of a constant valued time domain signal x(t) = V27r wiH be 
XQLJ) = δ(ω). 

B.2.3 Cosine 

A sinusoidal time domain signal can be interpreted as a modulated constant value. Apply-
ing the frequency shift property from Eq. (B.15) thus shows that the spectrum of a cosine 
is the spectrum of a constant value shifted by the cosine's frequency ω0, the delta function 
δ(ω -ω0). 

B.2.4 Rectangular Window 

The rectangular window is defined by 

( l _ I < t < I 
WR(t) = Γ l ~ . - 2 - (B.31) 

10, otherwise 

The spectrum of this window function is 

oo 

WR(ju) = J wn(t)e-iut dt 
— OO 

1/2 

= f e~iut dt 
- 1 / 2 

= -2 j ' s i n ( " /2 ) 

sin(w/2) . / ω \ 
ω/2 

B.2.5 Delta Pulse 

- sine ( | ) . (B.32) 

The delta pulse is a series of individual delta impulses, i.e., a superposition of delta func-
tions. It is defined by 

«ST(t)= Σ 5(t-iT0). (B.33) 
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Each delta impulse has a distance T0 from its neighbor. Using FT of a delta function given 
by Eq. (B.27) and the superposition property from Eq. (B.3) in combination with the time 
shift property from Eq. B. 13, the FT of <5T(*) is 

oo 

Δ τ ί » = Σ *~~ίωίΤα· <B-3 4) 
i= — oo 

With help from the geometric series it can be shown [71 that 

Λ /■ N 2π ^ . / 2m. Λ 

Αχθω) = — 2^ δ I ω ~ -γ*ωΤ) 
i — — oo ^ ^ 

= ωτΑωτ(ω). (Β.35) 

B.3 Transformation of Sampled Time Signals 

A sampled time signal can be represented by the multiplication of a continuous time signal 
x(t) multiplied by a delta pulse <5τ(£). Equation (B.8) states that a multiplication of two 
time signals corresponds to the convolution of their frequency transforms. This means that 

3 {*(*)} = 3 {x(t) ■ &r(t)} 

= χΈ {*(<)} *ff{*T(t)} 
= XQu)*AT(jw). (B.36) 

Note that although the time domain signal is discrete, the resulting spectrum is still con-
tinuous. As can be seen from Eq. (B.36), the spectrum is repeated periodically with ω-γ, 
the sample rate. This allows a very intuitive explanation of the sampling theorem stated 
in Eq. (2.9) since the periodically repeated spectra would overlap if signal x(t) contains 
higher frequencies than ωτ/2 (see Fig. B.l). In that case, reconstruction of the original 
signal x(t) is impossible, while otherwise perfect reconstruction is possible by applying an 
ideal low-pass filter with a cut-off frequency of ωτ/2 to the sampled signal x(i). The effect 
of overlapping spectra is called aliasing and is visualized in Fig. B.l. 

B.4 Short Time Fourier Transform of Continuous Signals 

Up to this point, 'we have dealt mostly with signals unlimited in time. In the real world, 
signals will usually have a defined start and stop time. We might also be interested in 
transforming only segments of such signals. This can be seen as multiplying an infinite 
time signal with a window function that equals zero outside the time boundaries of interest. 
In signal analysis, typical segment lengths range — dependent on the task at hand — 
between 10 and 300 ms. Smith points out three reasons for choosing segments of this 
length [8J: 

■ "Perhaps most fundamentally, the ear similarly Fourier analyzes only a short segment 
of audio signals at a time (on the order of 10-20 ms worth). Therefore, to match 
our spectrum analysis to human hearing, we desire to limit the time window of the 
analysis." 
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Figure B.l Schematic visualization of the spectrum of a continuous time domain signal (left) and 
the sampled signal in accordance (top) and violation (bottom) of the sampling theorem 

■ "Audio signals typically have spectra which change over time. It is therefore usually 
most meaningful to restrict analysis to a time window over which the spectrum stays 
rather constant." 

■ "It can be extremely time consuming to compute the Fourier transform of an audio 
signal of typical length, and it will rarely fit in computer memory all at once." 

B.4.1 Window Functions 

Since every multiplication in the time domain corresponds to a convolution of the corre-
sponding spectra, the spectrum of the signal is convolved with the spectrum of the window. 
The spectrum of the window thus has influence on the resulting spectrum. The most simple 
window in the time domain is a rectangular window introduced in Sect. B.2.4. The typical 
spectral shape of a window consists of a main lobe and many side lobes with more or less 
decreasing amplitude. 

When the signal x(t) of interest is a sinusoid, then the resulting FT of the windowed 
signal will therefore be a superposition of two window functions with their main lobes lo-
cated at the signal's frequency ω0, -ω 0 , . . . , so the delta functions are effectively "smeared" 
by windowing artifacts. This undesired side effect is referred to as spectral leakage. It is 
usually characterized by 

■ the width of the main lobe, 

■ the height of the first (closest) side lobe peak, and 

■ the rolloff or attenuation of the subsequent side lobe peaks. 

In order to optimize these properties toward individual use cases, different window func-
tions have been suggested in the past. Figure B.2 shows the presented window functions 
in time domain (left) and frequency domain (right). 
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Figure B.2 Windows in time domain (left) and frequency domain (right) 

B.4.1.1 Rectangular Window 

The FT of the rectangular window has already been derived in Sect. B.2.4 to be a sine 
function: 

wMj ω) = sine 

B.4.1.2 Bartlett Window 

The Bartlett window has a triangular shape. It is defined by 

writ) = < 
t + 1, - ' / 2 < i < 0 

1 - ί, 0 < t < 1/2 

0, otherwise 

wR{2t) *wR(2t). 

Using Eq. (B.7) it can be deduced that 

WTQw) = 3{wn{2t)} ■ 3{wR(2t)} 
1 . 2 (ω 

= - ■ s ine — 
2 V4 

B.4.1.3 Generalized Superposed Cosines 

It is possible to generalize many window functions with 

o-x 

wsup(t) = wR{t.) ] T bj cos {^-jt 
j=0 

Different values for Ö result in different window families: 

■ 0 = 1: rectangular window wR(t) 

(B.37) 

(B.38) 

(B.39) 

(B.40) 
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■ 0 = 2: Hamming family of windows: 

- cosine window wc{t): 
b0 = 0, 6i = 1 

- von-Hann window wn(t): 
b0 = i/2, &! = 1/2 

- Hamming window w\im{t): 

b0 = 25/46, 6i = 42/46 

■ 0 = 3: Blackman-Harris family of windows: 

- classic Blackman window w-Q{t): 
b0 = 7938/ 1 8 6 0 8 i bi = 9240/1 8 6 08, b2 = l 4 3 0 / l8608 

- Blackman-Harris window WBn(t): 
b0 = 0.4243801, 61 = 0.4973406, b2 = 0.0782793 

B.4.1.4 Generalized Power of Cosine 

A different generalization of window functions is 

Wpow(i) = wR{t) cos*3 ( | i ) . (B.41) 

Again, different windows can be derived for different ß: 

■ rectangular window w^{t): 
ß = 0 

■ cosine window wc(t): 
ß = l 

■ von-Hann window wn(t): 
ß = 2 

■ alternative Blackman window WAB{t): 
ß = 0 

B.5 Discrete Fourier Transform 

In computer applications, a discrete representation of the signal's spectrum is required; it 
can only be defined at discrete frequency bins. The frequency bins are evenly distributed 
over the interesting range of frequencies with the distance 

The DFT of the nth block of the signal x(i) will be referred to as STFT and is defined by 

XQAQ) = J2 x& exP (-ikilf) <B-4 3> 

withfc = 0 , l , . . . , / C - l . 
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Thus, the DFT of a block of samples of length K, also consists of exactly K, complex 
values; however, since the signal x(i) is real, the result will be symmetric with 

X()C-k) = X*(k) (B.44) 

and only KJ2 complex results need to be computed. 
The spectrum X(k, n) can be interpreted as the (continuous) FT of the block n of signal 

x(i) sampled at equidistant bins at the positions k ■ ΔΩ. It has to be periodic 

X(k)=X{k + K.) (B.45) 

because the time domain signal is discrete. 
The spectrum can only be discrete if the time domain signal is periodic (compare the 

Fourier series). Therefore, the DFT can be interpreted as the FT applied to the current 
block of samples periodically continued. 

The Inverse Discrete Fourier Transform (IDFT) allows reconstruction of the time sam-
ples that had been transformed: 

K.-1 

x(i) = γ^ X(k)e'kiAn. (B.46) 
fc=l) 

The properties of the DFT correspond to the properties introduced for the continuous FT, 
but a few details have to be kept in mind: the multiplication of two DFTs corresponds to 
a circular convolution (similar to the CiCF) in the time domain. The same is true for time 
and frequency shift operations. 

B.5.1 Window Functions 

The discrete window functions are sampled (a potentially shifted) versions of the continu-
ous window functions given above. The rectangular window is 

wR(i)= ' * 7 " 2 , (Β.47) 
ID, otherwise 

and the superposed cosine window is 

o - i 

K, 
.7=0 

Wsup('i) = wn(i) Σ a3 c o s ( ]—j^~i) ■ (B.48) 

The DFT of a rectangular window is 

■K2*± 

sin ' 
WR{k, n) = exp ~j — — · x ' . (B.49) 

sin 

Note that the phase shift term originates in moving the first window sample to sample 0. 
When transforming a windowed sine, the result will be shifted in the frequency domain 

■Ω( 

X(k,n)=exp(~i'-^w^^'~no) ~~k f . (B.50) 
*- ' sin ( - S - - Ωη 
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Table B.l Frequency domain properties of the most common windows (from [479]) 

Window 

» R 

W T 

W C 

WH 

■WHm 

l » B 

» A B 

W B H 

AB [Bins] 

0.89 

1.28 

1.20 

1.44 

1.30 

1.68 

1.66 

1.66 

ASL [dB] 
- 1 3 

- 2 7 

- 2 3 

- 3 2 

- 4 3 

- 5 8 

- 3 9 

- 6 7 

SSL [dB/Oct] 

- 6 

- 1 2 

- 1 2 

- 1 8 

- 6 

- 1 8 

- 2 4 

- 6 

^wc [dB] 
3.92 

3.07 

3.01 

3.18 

3.10 

3.47 

3.47 

3.45 

If the sinusoidal frequency exactly fits the frequency of a bin with index k, then all bins 
will be zero for k ψ kQ. In this case, all the zero crossings of the window function fall at 
the spectral bin positions. However, if kQ is between two frequency bins, then two artifacts 
appear: the main peak has lower level, the so-called process loss, and the frequency bins 
are now directly located at the main peaks of the side lobes. Two special cases are the best 
case and the worst case scenario with k0 being directly on a bin or exactly between two 
bins. In the time domain, the best case means that one or more periods of the sinusoidal fit 
exactly into the window with length /C. 

B.5.1.1 Discrete Window Properties 

The following properties can be used to characterize the frequency domain representation 
of a window function: 

■ width of main lobe AB (3 dB bandwidth in bins), 

■ peak level of highest side lobe A$L (dB), 

■ side lobe fall-off 5S L (dWoct), 

■ worst case process loss ^4wc (dB). 

A smaller main lobe width yields better frequency resolution and both a smaller side lobe 
peak level and higher side lobe fall-off results in less cross-talk between sinusoids of differ-
ent frequencies. The smaller the worst case process loss, the higher the resulting amplitude 
accuracy. 

Table B.l summarizes these properties for common windows. For detailed introductions 
to spectral leakage see Harris [479] and Smith [8]. 

B.5.2 Fast Fourier Transform 

An efficient way to compute the DFT is the Fast Fourier Transform (FFT). The FFT is 
equivalent to the "normal" DFT; it just computes the result more efficiently. More specif-
ically, the difference in the number of operations is approximately 0{K?) for the normal 
DFT compared to 0{K, log K.) for the FFT (compare [480, 481]). There are different al-
gorithms to compute the FFT; most FFT implementations require an input block length 
which equals a power of 2. 



APPENDIX C 

PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) maps the input variables — in our case usually a 
vector of features v — to a new coordinate system by a linear combination of the individual 
features: 

u(n)=TT -v(n). (C.l) 

The resulting vector u(n) is the data in the new coordinate system for observation n and 
transformation matrix T T contains different linear combinations for the input feature vec-
tor v(n). The number of features in the vector will be referred to as T. Formulating 
Eq. (C.l) not only for one observation but for a series of feature vectors V leads to 

U = TT ■ V. (C.2) 

The transformation matrix is a square matrix with the dimensions T x T. It is composed 
of vectors defining the linear combinations of the input features: 

T = C0 Ci . . . C;F_IJ . (C.3) 

The transformation matrix has the following main properties: 

■ the vectors Cj are in the direction of the highest variance in the data and the variance 
is concentrated in as few output components as possible, 

■ the vectors Cj are orthogonal to each other 

cj · Cj = 0 V i ^ j (C.4) 
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Figure C.l Scatter plot of a two-dimensional data set with variables x\,x?, and the rotated 
coordinate system after PCA with the component axes pi, p2 

■ and the transformation is invertible: 

v(n) = T ■ u{n). (C.5) 

Figure C.l shows the scatter plots of two example variables x\ and x-2 with the original 
axes on the left and rotated axes on the right. 

C.1 Computation of the Transformation Matrix 

The first step in computing the matrix T is the calculation of the feature covariance matrix: 

R=j^-(v-ßv){vT~ß^) (C.6) 

with the vector μν containing the arithmetic mean of each feature. The covariance matrix 
is square, symmetric, and has only positive entries. 

The eigenvectors of the covariance matrix represent the axes of the new coordinate sys-
tem and thus comprise the transformation matrix. Usually, they are ordered with decreasing 
eigenvalues; the vector in the first column CQ is the vector with the highest eigenvalue and 
the vector in the last column has the lowest eigenvalue. 

C.2 Interpretation of the Transformation Matrix 

The transformation matrix T contains useful information on the input data set. Each col-
umn is a different linear combination of the input features, and they are sorted according to 
their eigenvalues or, in other words, according to the variance this component contributes to 
the overall variance. Features with high influence on the first components can be assumed 
to be of higher importance than features with high influence on the last components. Thus, 
PCA can be useful for both feature subset selection and feature space transformation. As 
the last components have only limited impact on the result, they might be discarded. The 
matrix T can then be truncated from the dimensions T x T to T x £ with C being the 
required number of components in the space transformation process. 
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SOFTWARE FOR AUDIO ANALYSIS 

The process of developing software for audio analysis can generally be split into two steps, 
the algorithmic design including the prototyping as well as the evaluation and the im-
plementation of "production-quality" software which is made available to customers and 
users. The final software is commonly implemented in the programming languages C++ 
[482] and Java.1 Many developers consider C++ as the language that allows the most 
workload-efficient implementations and Java as the language that allows a comparably 
rapid development cycle. 

While C++ and Java are also used for algorithm prototyping, other languages such as 
Python,2 often extended by the packages NumPy, SciPy, and IPython,3 are more common. 
MatlabA (or the largely compatible open-source software Octave5) provides an environ-
ment with a simple script language with a large set of already included routines as well as 
various possibilities of data visualization. Furthermore, visual audio programming envi-
ronments such as Max6 or Pure Data (PD)1 are used especially in the context of designing 
real-time audio algorithms. 

'Java, http://www.java.com. Last retrieved on Jan. 28, 2012. 
2Python. http://www.python.org. Last retrieved on Jan. 28, 2012. 
3NumPy. http://numpy.scipy.org, SciPy. http://www.scipy.org, IPython. http://ipython.org. Last retrieved on Jan. 
28,2012. 
4Matlab. http://www.mathworks.com/products/matlab. Last retrieved on Jan. 28, 2012. 
50ctave. http://www.octave.org. Last retrieved on Jan. 28, 2012. 
6Max. http://cycling74.com/products/max. Last retrieved on Jan. 28, 2012. 
7Pure Data, http://puredata.info. Last retrieved on Jan. 28, 2012. 
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The aim of this appendix is to provide a short overview about software supporting the 
design and implementation of audio analysis algorithms. The solutions presented below in-
clude toolboxes, libraries, frameworks, and applications. They cover a multitude of ACA-
related tasks, and each solution focuses on improving or accelerating the prototyping or 
development process in different areas. The main areas of interest can be identified as 

■ annotation of (audio) files and generation of ground truth data, 

■ feature extraction, 

• pattern recognition and machine learning algorithms, and 

■ visualization of features and properties of (collections of) audio files. 

The software may also differ in the level of user expertise (developer vs. non-technical 
user), in its real-time capabilities, and in the input data sources (e.g., audio vs. MIDI). 

D.1 Software Frameworks and Applications 

This section presents software frameworks offering comprehensive possibilities for file 
input and output, signal processing, audio analysis, and machine learning. Thus, they 
offer the prototyping and possibly the building of ACA systems. These frameworks do not 
depend on any specific environment and do not require the usage of other software. 

D.1.1 Marsyas 

Marsyas is a software framework in C++ designed by George Tzanetakis. It offers both 
real-time and offline processing of audio data. While Marsyas features also audio synthesis 
and (effect) processing, its emphasis is on MIR. It is written in C++ but allows users access 
to configuring and using Marsyas, for instance, through a Python front end. 

Since its first publication [297], Marsyas has grown into a powerful set of classes which 
allow to construct basically any MIR-related system [483]. Numerous of the algorithms 
described in this book are already implemented in Marsyas. 

The design of Marsyas is modular; it consists of processing blocks which can be com-
posed into data flow networks. A block can represent different functionality; it can, for 
instance, be an audio or text file IO, a sound card audio IO or an algorithmic operation 
on audio samples or features. Marsyas also includes a set of machine learning tools for 
training and classification. 

The latest information and the source code of Marsyas is available from the project's 
web page.8 

D.1.2 CLAM 

A software framework developed by a research team of the Music Technology Group of 
Pompeu Fabra University, Spain, is C++ Framework for Audio and Music (CLAM). It is 
implemented in C++ and its emphasis is on spectral modeling and spectral processing. 

The first version of CLAM was presented in 2002 [484, 485J. The basic design prin-
ciples seem to be similar to Marsyas in the way that the researcher can build networks of 

8Marsyas. http://marsyas.info. Last retrieved on Jan. 28, 2012. 
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individual processing blocks. Nowadays, CLAM comes with a visual network editor that 
allows the user to build the processing networks through a graphical user interface [486]; 
its main focus remains on audio processing and less on audio analysis. It does, for instance, 
not include any machine learning blocks. 

The latest information and the source code of CLAM is available from the project's web 
page.9 

D.1.3 jMIR 

The software framework jMIR, implemented in Java, is developed and maintained at the 
Music Technology Group at McGill University. Its focus is on machine-learning-related 
tasks on music such as musical genre classification and mood classification. 

The framework consists of a set of tools for feature extraction and machine learning 
algorithms as well as tools for meta data annotation. The tools can also be used individually 
[487, 488]. One of the most notable differences to the functionality of other frameworks is 
the built-in functionality to extract features directly from symbolic data such as MIDI. It 
comes with both an audio and a MIDI ground truth data set for musical genre classification. 

The latest information and the source code of jMIR is available from the project's web 

D.1.4 CoMIRVA 

CoMIRVA is a Java framework for the visualization of large collections of music data. It is 
developed at the Johannes Kepler University Linz. 

The software offers various possibilities of analyzing and visualizing the relationship 
(such as the similarity) of music files in large collections. This functionality is comple-
mented by some feature extraction routines and web data mining tools [489]. 

The latest information and the source code of CoMIRVA is available from the project's 
web page.11 

D.1.5 Sonic Visualiser 

Sonic Visualiser is a software for the visualization of various properties of one or more 
audio files. The project was initiated at the Centre for Digital Music at Queen Mary Uni-
versity of London. 

Sonic Visualiser was first presented in 2006 and has been under development since then 
[490]. It offers numerous possibilities to visualize and annotate audio. Compared to the 
frameworks presented above, it does not focus as much on the algorithm developer but on 
(non-technical) expert users such as musicologists who need access to objective informa-
tion on the audio recording. In order to be able to easily integrate new tools providing 
analysis data for the visualization, it offers a plugin interface called VAMP (see below). 

The latest information and the source code of Sonic Visualiser is available from the 
project's web page.12 

9CLAM. http://clam-project.org. Last retrieved on Jan. 28, 2012. 
10jMIR. http://jmir.sourceforge.net. Last retrieved on Jan. 31, 2012. 
"CoMIRVA: Collection of Music Information Retrieval and Visualization Applications, www.cp.jku.at/ 
CoMIRVA. Last retrieved on Jan. 31, 2012. 
12Sonic Visualiser. http://www.sonicvisualiser.org. Last retrieved on Jan. 31, 2012. 
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D.2 Software Libraries and Toolboxes 

In contrast to the frameworks presented above, the following software solutions focus on 
specific aspects such as feature extraction. Many of them require either a programming 
environment (for instance, Matlab) or they are libraries to be linked against a custom-
designed software. 

D.2.1 Feature Extraction 

The MIRtoolbox is a toolbox for Matlab and has been developed by a team at the Univer-
sity of Jyväskylä. It provides an extensive set of functions for the extraction of low-level 
features as well as for the analysis of tonal, structural, and temporal properties [491 ]. The 
latest information and the source code of the MIRtoolbox is available from the project's 
web page.'3 

The UbXtract library has been presented by Bullock from the Birmingham Conserva-
toire [492]. It is programmed in C and deals with the extraction of low-level features. The 
libXtract library allows to arbitrarily cascade the feature extraction routines for the compu-
tation of subfeatures on different hierarchical levels. The latest information and the source 
code of libXtract is available from the project's web page.'4 

Content-based Audio and Music Extraction Library (CAMEL) is a comparably new 
library for feature extraction and aggregation aspiring to become a framework for various 
MIR-related tasks. It is implemented in C++ and was presented by a team of the University 
of Lethbridge [493]. The latest information and the source code of CAMEL is available 
from the project's web page.'5 

Yet Another Audio Feature Extractor (YAAFE) is a command line tool for the extraction 
of low-level features published by the Telecom ParisTech [494]. It is implemented in C++ 
but provides Python bindings as well. YAAFE aims at very efficient feature extraction by 
utilizing a feature plan parser, determining and removing redundant processing steps in 
the calculation of different features. The latest information and the source code of YAAFE 
is available from the project's web page.'6 

The Timbre Toolbox is a Matlab toolbox for the extraction of a large set of (low-level) 
features. It is the result of a joint effort of IRCAM and McGill University [495]. The source 
code of the Timbre Toolbox is available online.'7 

SCMIR is an extension for the SuperCollider audio programming language. It is de-
veloped by Collins [496] and allows access to ACA routines through a high-level pro-
gramming language. The emphasis is on feature extraction in order to use the extracted 
information for "creative musical activity." SCMIR offers the extraction of standard fea-
tures, the analysis of tempo and beat, as well as structural analyses. The latest information 
and the source code of SCMIR is available from the project's web page.18 

13MIRtoolbox. https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox. Last retrieved 
on Jan. 31,2012. 
l4libXtract. http://libxtract.sourceforge.net. Last retrieved on Jan. 31, 2012. 
,5CAMEL - A Framework for Audio Analysis, http://camel-framework.sourceforge.net. Last retrieved on Jan. 
31,2012. 
,6Yaafe- audio features extraction, http://yaafe.sourceforge.net. Last retrieved on Jan. 31. 2012. 
I7http://recherche.ircam.fr/pub/timbretoolbox. Last retrieved on Jan. 31, 2012. 
I8SCMIR. http://www.sussex.ac.uk/Users/nc81/code.html. Last retrieved on Jan. 31, 2012. 
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Maaate is an audio analysis toolkit written in C++. It was designed to perform feature 
extraction and analysis routines directly on encoded MPEG Layer 1-3 files [497]. The 
latest information and the source code of Maaate is available from the project's web page.19 

A library designed for feature extraction in a real-time context is aubio. It is written in 
C++ and enables the user to extract several low-level features as well as both onsets and 
tempo in a causal way in order to support real-time applications. The latest information 
and the source code of aubio is available from the project's web page.20 

OpenSMILE is a C++ library for feature extraction. It addresses both speech processing 
and music processing by combining features typically used in both domains in one feature 
extractor [498]. The latest information and the source code of OpenSMILE is available 
from the project's web page.21 

D.2.2 Plugin Interfaces 

One idea to face the problem of multiple and apparently redundant implementations of the 
same (low-level) features in various libraries and frameworks is to define a plugin Applica-
tion Programmer's Interface (API). The advantage of using plugins for feature extraction 
is the possibility of dynamically loading new plugins at runtime without compilation or 
static linking, complemented by the simple exchange of plugins (features) between re-
searchers. A plugin API itself is thus a rather general interface definition of how to extract 
an unknown feature as opposed to the actual implementation of various features. 

D.2.2.1 FEAPI 

The Feature Extraction Application Programmer's Interface (FEAPI), named here for his-
toric reasons, was a plugin API for the extraction of low-level features. It was a joint effort 
with participants from the four institutions Ghent University, IRCAM, Technical Univer-
sity of Berlin and zplane.development [499]. 

The project is not actively maintained or developed anymore. One of the most likely 
reasons why FEAPI was not accepted by the research community was the lack of host 
applications. Although a Max port existed and had been used, other (graphical) user inter-
faces except for a simple command line interface did not exist. 

The documentation and source code of FEAPI, complemented by example implemen-
tations of several spectral and loudness features, can still be found on the FEAPI project 
web page.22 

D.2.2.2 VAMP 

VAMP is the only reasonably widespread plugin interface for feature extraction from audio 
signals. It has been defined and developed by a team of the Centre for Digital Music of 
the Queen Mary University of London [500]. VAMP plugins can be hosted by the Sonic 
Visualiser (see above). The basic functionality is similar to the functionality of FEAPI. 

Several plugins, as well as the latest information and the source code of VAMP is avail-
able from the project's web page.23 

19Maaate!. http://maaate.sourceforge.net. Last retrieved on Jan. 31, 2012. 
20aubio, a library for audio labelling, http://aubio.sourceforge.net. Last retrieved on Jan. 31, 2012. 
21 openSMILE: The Munich Versatile and Fast Open-Source Audio Feature Extractor. http://opensmile. 
sourceforge.net. Last retrieved on Jan. 31, 2012. 
22FEAPI. http://feapi.sf.net. Last retrieved on Jan. 31, 2012. 
23VAMP Plugins: The Vamp audio analysis plugin system, http://vamp-plugins.org. Last retrieved on Jan. 31, 
2012. 
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D.2.3 Other Software 

There is a multitude of other software applications and libraries that can be used in the 
context of ACA. Very important are the various machine learning and data mining solu-
tions; probably the most-cited software is the Waikato Environment for Knowledge Analy-
sis (WEKA) software [501 ].24 WEKA is a comprehensive collection of machine learning al-
gorithms and data pre-processing tools such as algorithms for regression, classification and 
clustering. Torch provides a Matlab-like environment for machine learning tasks [502J.25 

It can be used with the programming language Lua.26 Other libraries focus on specific ar-
eas of machine learning; examples are libsvm27 [503] and The Spider, a machine learning 
environment for Matlab.28 HTK is a toolkit for building and manipulating hidden Markov 
models [62].29 Due to its focus on speech recognition HTK also offers the extraction of 
various features. 

24Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka. Last retrieved on Jan. 31, 2012. 
25Torch 5. http://torch5.sourceforge.net. Last retrieved on Jan. 31, 2012. 
26The Programming Language Lua. http://www.lua.org. Last retrieved on Jan. 31, 2012. 
27LIBSVM - A Library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm. Last retrieved 
on Jan. 31,2012. 
28The Spider, http://people.kyb.tuebingen.mpg.de/spider. Last retrieved on Jan. 31, 2012. 
29HTK Speech Recognition Toolkit, http://htk.eng.cam.ac.uk. Last retrieved on Jan. 31, 2012. 
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Rise Time, see Attack Time 
RLB Weighting, 76, 78 
RMS, 27, 34, 37, 73-78, 125, 162 
ROC, 130 
Root Mean Square, see RMS 
Root Note, 82, 83, 85, 87, 88, 113, 114, 116 
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Spectrogram, 21, 104, 106, 175 
Spectrum, 35, 38, 51, 53, 56, 100-102, 104, 106, 

185, 188, 190-193, 195, 196 
Standard Deviation, 32, 37-39, 45, 47, 66, 89, 

112, 121, 132, 135 
Standard Pitch, see Concert Pitch 
STFT, 20, 21, 23, 24, 32, 42, 44, 45, 56, 60, 

92, 93, 95, 96, 100, 106, 109, 110, 
125-127, 133, 136, 147, 166, 192, 
195 

Subdominant, 88, 116, 117 
Subfeature, 64, 66, 154, 155, 157, 204 
Support Vector Machine, see SVM 
SVD, 69 
SVM, 155, 162 

Tactus, 122, 133, 135 
Tatum, 123, 137 
Temperament, 3, 90, 91, 171 
Tempo, 2-5, 31, 33, 119, 122-124, 127, 135-

137, 145, 147-150, 154, 156, 157, 
159, 164, 171, 174, 175, 177-179, 
205 

Local, see Local Tempo 
Main, see Main Tempo 
Mean, see Mean Tempo 
Mode, see Mode Tempo 
Perceived, see Perceived Tempo 

Tempo Detection, 124, 135, 136 
Tempo Induction, see Tempo Detection 
Tempo Tracking, see Tempo Detection 
Test Set, 131, 155 
Texture Window, 20, 66, 112, 134, 154, 155, 157 
Timbre, 3, 41, 42, 45, 47, 53, 73, 89, 97, 108, 

147, 150, 154, 172, 175, 177, 178 
Timbre Toolbox, 204 
Time Signature, 123, 124, 137, 154 
Timing, 3, 121, 123, 145-148, 171, 174, 175, 

177-179 
TN, 130 
Tonal Centroid, 115 
Tonal Power Ratio, 57 

Tonality, 54 
Tonalness, 54-56, 58-61, 63, 94-97, 110, 115 
Tonic, 87, 88, 90, 117 
TP, 130, 164 
Training Set, 155 
Transient, 8, 47, 56, 74, 120 
Tremolo, 3, 73, 133 
Triad, 86, 87, 116 
Tritone, 113-115 
True Negative, see TN 
True Peak Meter, 78 
True Positive, see TP 
Tuning Frequency, 88-90, 106-108 
Tuning Frequency Estimation, 106 

VAMP, 205 
Variance, 37, 38, 40, 65, 69, 103, 157, 199, 200 
Velocity, 73 
Vibrato, 3, 73, 91, 107, 133, 171, 175, 177, 178 
von-Hann Window, 195 

Waikato Environment for Knowledge Analysis, 
see WEKA 

Warping Path, see Alignment Path 
Watermarking, 163, 164 
WEKA, 206 
Wiener-Khinchin Theorem, 28 
Window, 193 

Alternative Blackman, see Alternative 
Blackman Window 

Bartlett, see Bartlett Window 
Blackman, see Blackman Window 
Blackman-Harris, see Blackman-Harris 

Window 
Cosine, see Cosine Window 
Hamming, see Hamming Window 
Rectangular, see Rectangular Window 
von-Hann, see von-Hann Window 

Window Function, 16, 191-193, 196, 197 
Word Length, 11, 12, 165, 182 
Workload, 19, 28, 35, 132, 144, 167, 201 

YAAFE, 204 
Yet Another Audio Feature Extractor, see YAAFE 

Z Weighting, 76 
Zero Crossing Rate, 62, 63, 98, 149, 154 
Zero Phase Filtering, 17 


