Vežba 6 – Mostovi za jednosmernu i naizmeničnu struju

Uvod

Cilj vežbe je da se sagledaju mogućnosti za merenja nepoznatih kapacitivnosti i promena otpornosti metodama mosta.

U okviru prvog dela vežbe meri se kapacitivnost pomoću Sotievog mosta. Osnovna pretpostavka je da se gubici kondenzatora mogu zanemariti. Dobijene vrednosti se porede sa vrednostima izmerenim RLC metrom i virtuelnim instrumentom za merenje impedanse primenom *Analog Discovery 2* (National Instruments, SAD) uređaja i kompatibilne *Waveforms* (Digilent, SAD) aplikacije. Virtuelni instrument za merenje impedanse, principski radi tako što realni i imaginarni deo impedanse indirektno meri, merenjem modula i faze (kompleksne) impedanse. Može se pokazati, izvodeći izraz za mernu nesigurnost, da je ovakav način merenja osetljiv na tačnost merenja faze, što kao rezultat može imati relativno veliku mernu nesigurnost koja je naročito izražena za vrednosti faze bliske nuli ili bliske $\pi/2$. RLC metar radi na principu automatizovanog mosta (*autobalancing bridge*) i, od ova tri načina merenja kapacitivnosti, ima najveću (najbolju) tačnost.

U okviru drugog dela vežbe meri se promena otpornosti temperaturno osetljivog otpornika pomoću neuravnoteženog Vitstonovog mosta.

Zadatak i uputstvo za merenje

Zadatak 1 – merenje kapacitivnosti

- 1. Sastaviti Sotiev most za merenje kapacitivnosti prema šemi sa Sl. 1. Poznate su vrednosti sledećih elemenata: R_1 =1000 Ω , R_2 =1000 Ω . Podesiti frekvenciju generatora na *f*=1000 Hz. Za promenljivu kapacitivnosti *C* koristiti dekadu kapacitivnosti. Na mestu nepoznate kapacitivnosti *C*_x povezati jednu od kapacitivnosti koje će biti merene.
- 2. Kao indikator ravnoteže koristiti se analogni osciloskop, Sl. 2. Koriste se oba kanala dvokanalnog osciloskopa, a na ekranu se posmatra napon U_{CD}. To se postiže tako što se na kanalu 1 posmatra signal u tački C (u odnosu na masu, tačka B), a na kanalu 2 signal u tački D (u odnosu na masu, tačka B). Preklopnici analognog osciloskopa se podese tako da se signal koji se vodi na kanal 2 invertuje i da se na ekranu osciloskopa iscrtava zbir signala sa kanala 1 i kanala 2:

 $U_{CD} = U_{CB} + (-U_{DB}).$

Slika 2: Osciloskop se koristi kao indikator u mostu

Slika 1: Sotiev most

- 3. Izmeriti kapacitivnost svih priloženih kondenzatora pomoću Sotievog mosta. Za svaku od kapacitivnosti dovesti most "u ravnotežu" ($U_{CD} \approx 0$) promenom vrednosti dekadne kapacitivnosti C.
- 4. Da li prikazana metoda merenjem kapacitivnosti pomoću Sotijevog mosta ima ograničenja? <u>Objasniti odgovor</u>.
- 5. Izmerene vrednosti kapacitivnosti proveriti pomoću RLC metra (*Hewlette Packard 4263B*). Pri merenju na RLC metru, meriti kapacitivnost kondenzatora i gubitke za oba pretpostavljena modela, redni i paralelni. To se postiže tako što se pri izboru parametra koji se meri (dugme **Meas Prmtr**) biraju prvo C_s i R_s a potom C_p i R_p . Ukoliko je pretpostavka da se gubici mogu zanemariti, C_s i C_p će biti približno jednaki.
- 6. C1 kapacitivnost priključiti kao *Device Under Test* (DUT) na *Analog Discovery 2* uređaj prema šemi sa Sl. 3A. Šema sa Sl. 3A je unapred **POVEZANA** (otpornost R=1 MΩ), a potrebno je samo na označena mesta u kolu priključiti nepoznatu kapacitivnost C1. Raspored pinova (tzv. *pinout*) za *Analog Discovery 2* uređaj je prikazan na Sl. 3B. Za *Analog Discovery 2* uređaj je na računaru instaliran drajver koji preko aplikacije *Waveforms* omogućava generisanje sinusoidalnog napona (*Waveform Generator 1*, na pinu W1) i merenje dva naponska signala (jedan naponski signal v_1 između 1+ i 1- pina, i drugi naponski signal v_2 između 2+ i 2- pina), Sl. 3. Na osnovu merenja ova dva naponska signala i poznate otpornosti *R*, aplikacija *Waveforms* proračunava moduo i fazu impedanse ili admitanse, u slučaju modela serijske ili paralelne veze respektivno.

Slika 3: A) Konfiguracija W1-C1-DUT-C2-R-GND za merenje impedanse, B) Raspored pinova za Analog Discovery 2 uređaj, preuzeto sa <u>https://atadiat.com/en/the-multi-function-instrument-analog-discovery-2-review/</u>

Pomoću virtuelnog instrumenta za merenje impedanse *Impedance/Meter* u okviru *Waveforms* aplikacije, Sl. 4, izmeriti nepoznatu kapacitivnost C1 (na interfejsu aplikacije podesiti konfiguraciju na W1-C1-DUT-C2-R-GND, amplitudu ulaznog sinusoidalnog napona na 1 V i frekvenciju na 1 kHz, a vrednost poznatog otpornika (*Resistor*) na R=1 MΩ). Očitati pokazivanja virtuelnog instrumenta i u slučaju redne i u slučaju paralelne veze (*Model: Series* ili *Parallel*), pritiskom na dugme *Run*.

Zaustaviti rad virtuelnog instrumenta (pritiskom na dugme *Stop*) i fizički na protobordu zameniti otpornik R=1 M Ω otpornikom od 100 Ω . Proveriti sada pokazivanje instrumenta. Zašto su sada odstupanja od pokazivanja na RLC metru veća nego u slučaju kada je bio upotrebljen otpornik od 1 M Ω ?

Pomoću virtuelnog instrumenta za merenje impedanse *Impedance/Analyzer* u okviru *Waveforms* aplikacije, prikazati frekvencijske karakteristike za |Z|,|Rs|,|Xs|i fazu θ u

opsegu frekvencija od 100 Hz do 10 MHz. Na osnovu fazne karakteristike proceniti do koje učestanosti su kapacitivni efekti u modelu impedanse najizraženiji.

Po završetku rada sa virtuelnim instrumentom, ukloniti otpornik od 100 Ω i povezati ponovo otpornik od 1 M Ω onako kako je inicijalno bio povezan.

₩ WaveForms (new workspace) – □ ×				
Workspace Con W WaveForms (new workspace) - C X				
Welcome 🔶	Workspace Control Se	ttings <u>W</u> indow <u>H</u> elp		
	Welcome 🔶 Help	Impedance 1 X	D 🖉 🔁 🖉	
PW Scope	<u>File Control View V</u>	(indow		
Wayagan	Meter Analyzer Input	Phase Voltage Current Impedance Admittance Inductance Capacitance Factor Nyquist Custom1 Custom2 Time Notes		
- wavegen	Single Au	to Frequency W1-C1-DUT-C2-R-GND V Amplitude: 1V V Resistor: 1MQ V Options V +	2+ 1- 	
	Stop 1 kHz	✓ Mode: Amplitude ✓ Offset: 0 V ✓ Averaging: 500 ms ✓ Compensation X ↓ W1	÷	
	Element: Auto	✓ Model: Series ✓ □ Custom Series		
	Cs Series Capacitance	125.1 nF		
		(237 Mg		
Logger	121 Impedance	1.2/3 MS2		
[]]•]	Rs Series Resistance	9.349 kΩ		
Logic	Xs Series Reactance	-1.2726 ΜΩ		
	∠ Input Phase	-61.3553 °		
LTT ratterns	θ Phase	-89.5791 °		
E StaticIO	D Dissipation	0.0073465		
	Q Quality	136.1186		
Julhin. Spectrum				
Notwork				
Impedance	-			
6				
Tracer				
			-	
CAN AVR PTOTOCOT	9 New	Save As	- C × - C × stom1 Custom2 Time Notes Stom1 Custom2 Time Notes Compensation ↓ 14 D2+ D2+ Compensation ↓ 14 D2+ D2+ W1 + D2+ D2+ Compensation ↓ 14 D2+ D2+ Compensation ↓ 14 D2+ D2+ Compensation ↓ 14	
{JS} Script				
	U Open last	workspace on start		
		Manual Trigger Discovery2 A DEMO	18.1 Status: OK 🗸 💡	

Slika 4: Waveforms aplikacija

Zadatak 2 – merenje otpornosti u neuravnoteženom Vitstonovom mostu

<u>Kolo je povezano i NE TREBA ga razvezivati</u> i ponovo povezivati, već samo uočiti karakteristične delove kola.

Sagledati kako je na protobordu sastavljen Vitstonov most sa instrumentacionim pojačavačem kao izlaznim stepenom, Sl. 5. Rx je temperaturno osetljivi otpornik, NTC (*Negative Temperature Coefficient*) termistor, čija promena otpornosti se ispituje, R_X=R±ΔR, R=10 kΩ. R₂ je potenciometar koji služi za uravnotežavanje mosta, R_{2max}=20 kΩ. R₁=R₃=R=10 kΩ, ±V_{cc}=±15 V, E=5V.

Slika 5: Vitstonov most sa instrumentacionim pojačavačem kao izlaznim stepenom

Za neuravnotežen Vitstonov most važi:

$$\begin{split} u_{CD} &= u_{CB} + u_{BD} = -E \cdot \frac{R_2}{R_1 + R_2} + E \cdot \frac{R_X}{R_x + R_3} \\ u_{CD} &\approx E \cdot \frac{\Delta R}{2R} \,, \end{split}$$

pod uslovom da je promena otpornosti ΔR mnogo manja od nominalne otpornosti temperaturno osetljivog otpornika R.

Pomoću otpornika $R_G=5 \text{ k}\Omega$ je podešeno da pojačanje instrumentacionog pojačavača INA121 sa Sl. 6 iznosi:

$$G = 1 + \frac{50 \ k\Omega}{R_G} = 11,$$

Izlazni napon instrumentacionog pojačavača je:

$$v_{izlaz} = G \cdot u_{CD} \approx G \cdot E \frac{\Delta R}{2R}$$

- 2. Analogni ulaz NI USB A/D konvertora (AI0 pin) je povezan tako da meri napon *v*_{izlaz} (*v*_{izlaz} na AI0 pin, referentna tačka od INA121 na GND pin). Proveriti kako je ostatak kola povezan.
- 3. Pokrenuti program *Most.vi* na *Desktop-*u i izabrati tekstualnu datoteku (npr. *proba.txt* na *Desktop-*u) u koju će prikupljeni podaci biti upisivani. Ovaj program prikuplja podatke sa analognog ulaza **AI0** i prikazuje ih na monitoru zajedno sa maksimalnom i minimalnom vrednošću koje proračunava u realnom vremenu na osnovu prikupljenih odbiraka.
- 4. Pomoću potenciometra *R*_G podesiti da most bude "u ravnoteži", tj. da napon koji se meri na kanalu **AI0** bude 0.
- 5. Između dva prsta uhvatiti temperaturno osetljivi otpornik. Uočiti da se napon v_{izlaz} povećava zbog porasta temperature. Na interfejsu su dostupni digitalni indikatori koji daju vrednosti za maksimalnu i minimalnu vrednost napona v_{izlaz} u poslednjih 10 s, kao i za vrednost poslednjeg prikupljenog odbirka napona v_{izlaz} . Očitati maksimalnu vrednost napona koja se dostiže pri ovakvom zagrevanju temperaturno osetljivog otpornika. Potom pustiti otpornik. Uočiti da se napon v_{izlaz} smanjuje. Za maksimalnu vrednost napona pri "zagrevanju" otpornika odrediti odgovarajuću promenu otpornosti ΔR .
- 6. Nakon izlaska iz programa *Most.vi*, otvoriti datoteku *proba.txt* u Notepad aplikaciji i pogledati njen sadržaj. Uočiti da su podaci organizovani u obliku kolone odbiraka napona v_{izlaz}. Snimljenu tekstualnu datoteku zatvoriti i obrisati.